Process Guidance Note 2/08(13)
Statutory guidance for copper and copper alloy processes
Revised: July 2013
Defra would like to acknowledge the work of the Environment Agency’s Local Authority Unit in the drafting of this guidance note.
Revision of the guidance

The electronic version of this publication is updated from time to time with new or amended guidance. Table 0.1 is an index to the latest changes (minor amendments are generally not listed).

<table>
<thead>
<tr>
<th>Date of change</th>
<th>Section/paragraph where change can be found</th>
<th>Nature of change</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>July 2013</td>
<td>Throughout</td>
<td>Addition of colour coding to tables</td>
<td></td>
</tr>
</tbody>
</table>
Contents

Revision of the guidance ..i

1. Introduction ..1
 Legal basis ..1
 Who is the guidance for? ...2
 Updating the guidance ..2
 Consultation ...3
 Policy and procedures ..3

2. Timetable for compliance and reviews ..4
 Existing processes or activities ...4
 Permit reviews ..5

3. Activity description ..6
 Regulations ...6
 Potential releases ...7
 Pollutants and sources ...7

4. Emission limits, monitoring and other provisions ...8
 Monitoring, investigating and reporting ..10
 Information required by the regulator ...10
 Visible emissions ..11
 Emissions of odour ..12
 Abnormal events ...12
 Start up and shutdown ..13
 Continuous monitoring ...13
 Calibration and compliance monitoring ...14
 Varying of monitoring frequency ...15
 Monitoring of unabated releases ...16
 Representative sampling ...17

5. Control techniques ..18
 Summary of best available techniques ..18
 Techniques to control emissions from contained sources ..19
 Fugitive emissions ..20
 Air quality ...21
 Dispersion & dilution ..21
 Ambient air quality management ...21
 Stacks, vents and process exhausts ..22
 Management ...23
 Management techniques ...23
 Appropriate management systems ..23
 Training ...24
 Maintenance ...24

6. Summary of changes ..25

7. Further information ..26
 Sustainable consumption and production (SCP) ..26
 Health and safety ...26
 Further advice on responding to incidents ...27
List of Tables
Table 0.1 - Revision of the guidance ..i
Table 2.1 - Compliance timetable ...4
Table 3.1 - Regulations listing activities ...6
Table 4.1 - Emission limits, monitoring and other provisions9
Table 5.1 - Summary of control techniques ..18
Table 6.1 - Summary of changes ...25
1. Introduction

Legal basis

1.1 This note applies to the whole of the UK. It is issued by the Secretary of State, the Welsh Government, the Scottish Government and the Department of the Environment in Northern Ireland (DoE NI) to give guidance on the conditions appropriate for the control of emissions into the air from copper and copper alloy processes. It is published only in electronic form and can be found on the Defra website. It supersedes PG2/07(04) and NIPG2/07(04).

1.2 This guidance document is compliant with the Code of Practice on Guidance on Regulation page 6 of which contains the "golden rules of good guidance". If you feel this guidance breaches the code or you notice any inaccuracies within the guidance, please contact us.

1.3 This is one of a series of statutory notes giving guidance on the Best Available Techniques (BAT). The notes are all aimed at providing a strong framework for consistent and transparent regulation of installations regulated under the statutory Local Air Pollution Prevention and Control (LAPPC) regime in England and Wales, Scotland and Northern Ireland. The note will be treated as one of the material considerations when determining any appeals against a decision made under this legislation. Further guidance on the meaning of BAT can be found for England and Wales (in chapter 12 of the General Guidance Manual), Scotland, and Northern Ireland, (in chapter 9).

1.4 In general terms, what are BAT for one installation in a sector are likely to be BAT for a comparable installation. Consistency is important where circumstances are the same. However, in each case it is, in practice, for regulators (subject to appeal) to decide what are BAT for each individual installation, taking into account variable factors such as the configuration, size and other individual characteristics of the installation, as well as the locality (e.g. proximity to particularly sensitive receptors).

1.5 The note also, where appropriate, gives details of any mandatory requirements affecting air emissions which are in force at the time of publication, such as those contained in Regulations or in Directions from the Government. In the case of this note, at the time of publication there were no such mandatory requirements.
1.6 In Section 4 and Section 5, arrows are used to indicate the matters which should be considered for inclusion as permit conditions. It is important to note, however, that this should not be taken as a short cut for regulators to a proper determination of BAT or to disregard the explanatory material which accompanies the arrows. In individual cases it may be justified to:

- include additional conditions;
- include different conditions;
- not include conditions relating to some of the matters indicated.

In addition, conditions will need to be derived from other parts of the note, in particular to specify emission limits, compliance deadlines and mandatory requirements arising from directions or other legislation.

Who is the guidance for?

1.7 This guidance is for:

Regulators

- local authorities in England and Wales, who must have regard to this statutory guidance when determining applications for permits and reviewing extant permits;
- the Scottish Environment Protection Agency (SEPA) in Scotland, and district councils or the Northern Ireland Environment Agency (NIEA), in Northern Ireland;

Operators who are best advised also to have regard to it when making applications and in the subsequent operation of their installation;

Members of the public who may be interested to know what the Government considers, in accordance with the legislation, amounts to appropriate conditions for controlling air emissions for the generality of installations in this particular industry sector.

Updating the guidance

1.8 The guidance is based on the state of knowledge and understanding, at the time of writing, of what constitute BAT for this sector. The note may be amended from time to time to keep up with developments in BAT, including improvements in techniques, changes to the economic parameters, and new understanding of environmental impacts and risks. The updated version will replace the previous version on the Defra website and will include an index to the amendments.
1.9 Reasonable steps will be taken to keep the guidance up-to-date to ensure that those who need to know about changes to the guidance are informed of any published revisions. However, because there can be rapid changes to matters referred to in the guidance – for example to legislation – it should not be assumed that the most recent version of this note reflects the very latest legal requirements; these requirements apply.

Consultation

1.10 This note has been produced in consultation with relevant trade bodies, representatives of regulators including members of the Industrial Pollution Liaison Committee and other potentially-interested organisations.

Policy and procedures

1.11 General guidance explaining LAPPC and setting out the policy and procedures is contained in separate documents for England and Wales, Scotland and Northern Ireland.
2. Timetable for compliance and reviews

Existing processes or activities

2.1 This note contains all the provisions from previous editions which have not been removed. Some have been amended. For installations in operation at the date this note is published, the regulator should have already issued or varied the permit having regard to the previous editions. If they have not done so, this should now be done.

2.2 The new provisions of this note and the dates by which compliance with these provisions is expected are listed in Table 2.1, together with the paragraph number where the provision is to be found. Compliance with the new provisions should normally be achieved by the dates shown. Permits should be varied as necessary, having regard to the changes and the timetable.

Table 2.1 - Compliance timetable

<table>
<thead>
<tr>
<th>Guidance</th>
<th>Relevant paragraph/row in this note</th>
<th>Compliance date</th>
</tr>
</thead>
<tbody>
<tr>
<td>There are no new provisions in this note likely of themselves to result in a need to vary existing permit conditions. For a full list of changes made by this note, excluding very minor ones, see Table 6.1.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.3 Replacement plant should normally be designed to meet the appropriate standards specified for new installations/activities.

2.4 Where provisions in the preceding guidance note have been deleted or relaxed, permits should be varied as necessary as soon as reasonably practicable.

2.5 For new activities, the permit should have regard to the full standards of this guidance from the first day of operation.

2.6 For substantially changed activities, the permit should normally have regard to the full standards of this guidance with respect to the parts of the activity that have been substantially changed and any part of the activity affected by the change, from the first day of operation.
Permit reviews

2.7 Under LAPPC, the legislation requires permits to be reviewed periodically but does not specify a frequency. It is considered for this sector that a frequency of once every eight years ought normally to be sufficient for the purposes of the appropriate Regulations. Further guidance on permit reviews is contained in the appropriate Guidance Manual for England and Wales, Scotland, Practical guide section 10 and Northern Ireland Part B Guidance page 9, Northern Ireland Part C Guidance chapter 17. Regulators should use any opportunities to determine the variations to permits necessitated by paragraph 2.2 above in conjunction with these reviews.

2.8 Conditions should also be reviewed where complaint is attributable to the operation of the process and is, in the opinion of the regulator, justified.
3. **Activity description**

Regulations

3.1 This note applies to LAPPC installations for the copper and copper alloy processes. The activities for regulation are listed in **Table 3.1**.

<table>
<thead>
<tr>
<th>LAPPC</th>
<th>England and Wales</th>
<th>Scotland</th>
<th>Northern Ireland</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EPR Schedule 1 reference</td>
<td>PPC Schedule 1 reference</td>
<td>PPC Schedule 1 reference</td>
</tr>
<tr>
<td>Part B</td>
<td>Section 2.2 Part B</td>
<td>Section 2.2, Part B</td>
<td>Section 2.2 Part B</td>
</tr>
<tr>
<td>Part C</td>
<td>n/a</td>
<td>n/a</td>
<td>Section 2.2 Part C</td>
</tr>
</tbody>
</table>

The links are to the original version of the Regulations. A consolidated version is not available on www.legislation.gov.uk.

3.2 This note refers to processes melting copper or copper alloys, in an installation with a melting capacity of 20 tonnes or less per day.

3.3 Auxiliary foundry operations including casting and finishing are the subject of another note PG2/04 and processes for the thermal segregation and recovery or extraction of copper from mixed scrap are the subject of another note PG2/01.

3.4 Processes where non-ferrous metal is produced from secondary raw materials are included in Part A of the definition under LAPPC.

3.5 Refining which is incidental to the process of making or melting copper or copper alloys is, however, covered in this note. Such metal treatment processes include compositional adjustment and degassing using nitrogen (though this is not a common activity).

For the purpose of this note, refining is defined as "to cleanse, reduce or remove deleterious elements, oxides or other gangue material, for example by means of the addition of salt flux or the injection of gases to the molten metal".

3.6 Typically these processes use electrical induction, gas or oil fired crucible furnaces. Metal melted is either ingot or clean returns or clean scrap to produce a wide range of alloys. Casting may be batch or continuous.
Potential releases

Pollutants and sources

3.7 The key emissions from these processes are those consisting of particulate matter, inorganic chloride and fluoride, and metals (depending upon the alloys melted) such as copper, zinc, lead, nickel, tin and their compounds.

3.8 Use of chloride fluxes will give rise to chloride emissions.

3.9 Use of fluoride fluxes will give rise to fluoride emissions.

3.10 Handling of raw materials and residues may give rise to particulate matter in the form of dust.

3.11 The melting of metal may give rise to metals emitted mainly in the form of oxide fume (particulate fraction). The metal compounds emitted will depend upon the make up of the feedstock. Alloys that contain zinc will have a greater emission due to the low boiling point of zinc, which is released as zinc oxide.

3.12 Dioxins may be produced if the conditions that give rise to such pollutants are present. These are:

- presence of chloride ions - these can arise from scrap that is contaminated with chlorine containing plastics or chlorinated cutting fluids, from use of coal, coke, fuel oil and from certain fluxes.

- presence of organic carbon - this may arise from organic contaminants in scrap and from coal, coke or oil used as fuel.

- gases held between 200°C and 650°C especially in the presence of a metal catalyst such as copper.
4. Emission limits, monitoring and other provisions

4.1 Emissions of the substances listed in Table 4.1 should be controlled.

4.2 The emission limit values and provisions described in this section are achievable using the best available techniques described in Section 5. Monitoring of emissions should be carried out according to the method specified in this section or by an equivalent method agreed by the regulator. Where reference is made to a British, European, or International standard (BS, CEN or ISO) in this section, the standards referred to are correct at the date of publication. (Users of this note should bear in mind that the standards are periodically amended, updated or replaced.) The latest information regarding the monitoring standards applicable can be found at the Source Testing Association website. Further information on monitoring can be found in Environment Agency publications, M1 and M2.

4.3 All activities should comply with the emission limits and provisions with regard to releases in Table 4.1.

The reference conditions for limits in Section 4 are: 273.1K, 101.3kPa, without correction for water vapour content, unless stated otherwise.

Table 4.1 should be considered in conjunction with the monitoring paragraphs found later in this section.
<table>
<thead>
<tr>
<th>Row</th>
<th>Substance</th>
<th>Source</th>
<th>Emission limits/provisions</th>
<th>Type of monitoring</th>
<th>Monitoring frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Total particulate matter</td>
<td>Melting, holding and pouring processes*</td>
<td>20 mg/m³</td>
<td>Indicative</td>
<td>Continuous</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plus</td>
<td>Plus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Manual extractive test</td>
<td>Annual</td>
</tr>
<tr>
<td>2</td>
<td>Total particulate matter</td>
<td>Other processes e.g. fettling, grinding, shot blasting*</td>
<td>20 mg/m³</td>
<td>Indicative</td>
<td>Continuous</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Plus</td>
<td>Plus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Manual extractive test</td>
<td>Annual</td>
</tr>
<tr>
<td>3</td>
<td>Copper and copper compounds (expressed as copper)</td>
<td>From melting and holding furnaces and from pouring</td>
<td>20 mg/m³</td>
<td>Manual extractive test</td>
<td>Annual</td>
</tr>
<tr>
<td>4</td>
<td>Lead and lead compounds (expressed as lead)</td>
<td>From melting and holding furnaces and from pouring</td>
<td>2 mg/m³</td>
<td>Manual extractive test</td>
<td>Annual</td>
</tr>
<tr>
<td>5</td>
<td>Nickel and nickel compounds (expressed as nickel)</td>
<td>From melting and holding furnaces and from pouring</td>
<td>5 mg/m³</td>
<td>Manual extractive test</td>
<td>Annual</td>
</tr>
<tr>
<td>6</td>
<td>Tin and tin compounds (expressed as tin)</td>
<td>From melting and holding furnaces and from pouring</td>
<td>5 mg/m³</td>
<td>Manual extractive test</td>
<td>Annual</td>
</tr>
<tr>
<td>7</td>
<td>Cadmium, chromium and their compounds (expressed as the metal)</td>
<td>From melting and holding furnaces and from pouring</td>
<td>Total emission in combination 1 mg/m³</td>
<td>Manual extractive test</td>
<td>Annual</td>
</tr>
<tr>
<td>8</td>
<td>Chloride (expressed as hydrogen chloride)</td>
<td>Processes where chloride fluxes are used</td>
<td>5 mg/m³</td>
<td>Manual extractive test</td>
<td>Annual</td>
</tr>
<tr>
<td>9</td>
<td>Fluoride (expressed as hydrogen fluoride)</td>
<td>Processes where fluoride fluxes are used</td>
<td>5 mg/m³</td>
<td>Manual extractive test</td>
<td>Annual</td>
</tr>
<tr>
<td>10</td>
<td>Dioxins</td>
<td>Processes likely to emit dioxins</td>
<td>1 ng/m³ (I- TEQ)</td>
<td>Manual extractive test</td>
<td>Annual</td>
</tr>
</tbody>
</table>

Certain alloys give rise to negligible particulate emissions as they do not contain zinc or lead, and extraction and monitoring is not applicable to processes melting these alloys. If other alloys make up more than 2% of the total melted in any twelve month period then the limits should apply.
Monitoring, investigating and reporting

4.4 The operator should monitor emissions, make tests and inspections of the activity. The need for and scope of testing (including the frequency and time of sampling) will depend on local circumstances.

- The operator should keep records of inspections, tests and monitoring, including all non-continuous monitoring, inspections and visual assessments. Records should be:
 - kept on site;
 - kept by the operator for at least two years; and
 - made available for the regulator to examine.

- If any records are kept off-site they should be made available for inspection within one working week of any request by the regulator.

Information required by the regulator

4.5 The regulator needs to be informed of monitoring to be carried out and the results. The results should include process conditions at the time of monitoring.

- The operator should notify the regulator at least 7 days before any periodic monitoring exercise to determine compliance with emission limit values. The operator should state the provisional time and date of monitoring, pollutants to be tested and the methods to be used.

- The results of non-continuous emission testing should be forwarded to the regulator within 8 weeks of completion of the sampling.

- Adverse results from any monitoring activity (both continuous and non-continuous) should be investigated by the operator as soon as the monitoring data has been obtained. The operator should:
 - identify the cause and take corrective action;
 - clearly record as much detail as possible regarding the cause and extent of the problem, and the remedial action taken;
 - re-test to demonstrate compliance as soon as possible; and inform the regulator of the steps taken and the re-test results.
Visible emissions

4.6 The aim should be to prevent any visible airborne emission from any part of the process. This aim includes all sites regardless of location. Monitoring to identify the origin of a visible emission should be undertaken and a variety of indicative techniques are available.

- where ambient monitoring is carried out it may also be appropriate for the regulator to specify recording of wind direction and strength;
- where combustion units are in use for dryers then the combustion process should be controlled and equipment maintained as appropriate.

4.7 Emissions from combustion processes in normal operation should be free from visible smoke. During start up and shut down the emissions should not exceed the equivalent of Ringelmann Shade 1 as described in British Standard BS 2742.

- All other releases to air, other than condensed water vapour, should be free from persistent visible emissions.
- All emissions to air should be free from droplets.

Where there are problems that, in the opinion of the regulator, may be attributable to the installation, such as local complaints of visual emissions or where dust from the installation is being detected beyond the site boundary, the operator should investigate in order to find out which part of their operation(s) is the cause.

If this inspection does not lead to correction of the problem then the operator should inform the regulator who will determine whether ambient air monitoring is necessary. Ambient monitoring may either be by a British Standard method or by a method agreed with the regulator.

Whilst problems are ongoing, a visual check should also be made at least once per day/shift, by the operator, when an installation is being operated. The time, location and result of these checks, along with weather conditions such as indicative wind direction and strength, should be recorded. Once the source of the emission is known, corrective action should be taken without delay and where appropriate the regulator may want to vary the permit in order to add a condition requiring the particular measure(s) to be undertaken.
Emissions of odour

4.8 The overall aim should be that all emissions are free from offensive odour outside the site boundary, as perceived by the regulator. However, the location of the installation will influence the assessment of the potential for odour impact as local meteorological conditions may lead to poor dispersion conditions. Where the site has a low odour impact due to its remoteness from sensitive receptors, the escape of offensive odour beyond the installation would be unlikely to cause harm.

4.9 Where there are problems that, in the opinion of the regulator, may be attributable to the installation, such as local complaints of odour or where odour from the installation is being detected beyond the site boundary, the operator should investigate in order to find out which part of their operation(s) is the cause.

4.10 Whilst problems are ongoing, a boundary check should also be made at least once per day/shift, by the operator, when an installation is being operated. The time, location and result of these checks, along with weather conditions such as indicative wind direction and strength, should be recorded. Once the source of the emission is known, corrective action should be taken without delay and where appropriate the regulator may want to vary the permit in order to add a condition requiring the particular measure(s) to be undertaken.

Abnormal events

4.11 The operator should respond to problems which may have an adverse effect on emissions to air.

- In the case of abnormal emissions, malfunction or breakdown leading to abnormal emissions the operator should:
 - investigate and undertake remedial action immediately;
 - adjust the process or activity to minimise those emissions; and
 - promptly record the events and actions taken.
- The regulator should be informed without delay, whether or not there is related monitoring showing an adverse result:
 - if there is an emission that is likely to have an effect on the local community; or
 - in the event of the failure of key arrestment plant, for example, bag filtration plant or scrubber units.
- The operator should provide a list of key arrestment plant and should have a written procedure for dealing with its failure, in order to minimise any adverse effects.
Start up and shutdown

4.12 Higher emissions may occur during start-up and shut-down of a process. These emissions can be reduced, by minimising, where possible, the number of start-ups and shut-downs and having adequate procedures in place for start-up, shut-down and emergency shut-downs.

- The number of start-ups and shut downs should be kept to the minimum that is reasonably practicable.
- All appropriate precautions must be taken to minimise emissions during start-up and shutdown.

Continuous monitoring

4.13 Continuous monitoring can be either ‘quantitative’ or ‘indicative’. With quantitative monitoring the discharge of the pollutant(s) of concern is measured and recorded numerically. For pollution control this measurement is normally expressed in milligrams per cubic metre of air (mg/m3). Where discharge of the pollutant concerned is controlled by measuring an alternative parameter (the ‘surrogate’ measurement), this surrogate is also expressed numerically.

Continuous indicative monitoring is where a permanent device is fitted, for example, to detect leaks in a bag filter, but the output, whether expressed numerically or not, does not show the true value of the discharge. When connected to a continuous recorder it will show that emissions are gradually (or rapidly) increasing, and therefore maintenance is required. Alternatively it can trigger an alarm when there is a sudden increase in emissions, such as when arrestment plant has failed.

4.14 Where continuous indicative monitoring has been specified, the information provided should be used as a management tool. Where used, the monitor should be set up to provide a baseline output when the plant is known to be operating under the best possible conditions and emissions are complying with the requirements of the permit. Where used to trigger alarms, the instrument manufacturer should be able to set an output level which corresponds to around 75% of the emission limit. Thus the alarms are activated in response to this significant increase in pollutant loading above the baseline, so that warning of the changed state is given before an unacceptable emission occurs. The regulator may wish to agree the alarm trigger level.
4.15 Where continuous monitoring is required, it should be carried out as follows:

- All continuous monitoring readings should be on display to appropriately trained operating staff.
- Instruments should be fitted with audible and visual alarms, situated appropriately to warn the operator of arrestment plant failure or malfunction.
- The activation of alarms should be automatically recorded.
- All continuous monitors should be operated, maintained and calibrated (or referenced, in the case of indicative monitors) in accordance with the manufacturers’ instructions, which should be made available for inspection by the regulator.
- The relevant maintenance and calibration (or referencing, in the case of indicative monitors) should be recorded.
- Emission concentrations may be reported as zero when the plant is off and there is no flow from the stack. If required a competent person should confirm that zero is more appropriate than the measured stack concentration if there is no flow.
- Any continuous monitor used should provide reliable data >95% of the operating time, (i.e. availability >95%). A manual or automatic procedure should be in place to detect instrument malfunction and to monitor instrument availability.

Calibration and compliance monitoring

4.16 Compliance monitoring can be carried out either by use of a continuous emissions monitor (CEM), or by a specific extractive test carried out at a frequency agreed with the regulator.

4.17 Where a CEM is used for compliance purposes it must be periodically checked, (calibrated), to ensure the readings being reported are correct. This calibration is normally done by carrying out a parallel stand-alone extractive test and comparing the results with those provided by the CEM.

4.18 For extractive testing the sampling should meet the following requirements:

- For batch processes, where the production operation is complete within, say, 2 hours, then the extractive sampling should take place over a complete cycle of the activity.
4.19 Should the activity either be continuous, or have a batch cycle that is not compatible with the time available for sampling, then the data required should be obtained over a minimum period of 2 hours in total.

➢ For demonstration of compliance where a CEM is used no daily mean of all 15-minute mean emission concentrations should exceed the specified emission concentration limits during normal operation (excluding start-up and shut-down); and

➢ No 15-minute mean emission concentration should exceed twice the specified emission concentration limits during normal operation (excluding start-up and shut-down).

➢ For extractive testing, no result of monitoring should exceed the emission limit concentrations specified.

4.20 Exhaust flow rates should be consistent with efficient capture of emissions, good operating practice and meeting the requirements of the legislation relating to the workplace environment.

➢ The introduction of dilution air to achieve emission concentration limits should not be permitted.

Dilution air may be added for waste gas cooling or improved dispersion where this is shown to be necessary because of the operational requirements of the plant, but this additional air should be discounted when determining the mass concentration of the pollutant in the waste gases.

Varying of monitoring frequency

4.21 Where non-continuous quantitative monitoring is required, the frequency may be varied. Where there is consistent compliance with emission limits, regulators may consider reducing the frequency. However, any significant process changes that might have affected the monitored emission should be taken into account in making the decision.
4.22 When determining “consistent compliance” the following are cases which might not qualify for a reduction in monitoring:

a) variability of results: cases where monitoring results vary widely and include results in the range 12-18mg/m\(^3\) (when the emission limit is 20mg/m\(^3\))

b) the margin between the results and the emission limit: cases where results over a period are 18mg/m\(^3\) or more (when the emission limit is 20mg/m\(^3\)).

Consistent compliance should be demonstrated using the results from at least:

- three or more consecutive annual monitoring campaigns; or
- two or more consecutive annual monitoring campaigns supported by continuous monitoring.

Where a new or substantially changed process is being commissioned, or where emission levels are near to or approach the emission concentration limits, regulators should consider increasing the frequency of testing.

4.23 A reduction in monitoring frequency should not be permitted where continuous quantitative or indicative monitoring is required. These types of monitoring are needed to demonstrate at all times when the plant is operating, that either the emission limits are being complied with or that the arrestment equipment is functioning correctly.

Monitoring of unabated releases

4.24 Where emission limit values are consistently met without the use of abatement equipment, the monitoring requirement for those pollutants should be dispensed with subject to the “Varying of monitoring frequency” paragraphs above.

Where monitoring is not in accordance with the main procedural requirements of the relevant standard, deviations should be reported as well as an estimation of any error invoked.
Representative sampling

4.25 Whether sampling on a continuous or non-continuous basis, care is needed in the design and location of sampling systems, in order to obtain representative samples for all release points.

- Sampling points on new plant should be designed to comply with the British or equivalent standards (see paragraph 4.2).
- The operator should ensure that relevant stacks or ducts are fitted with facilities for sampling which allow compliance with the sampling standards.

Where monitoring is not in accordance with the main procedural requirements of the relevant standard, deviations should be reported.
5. Control techniques

Summary of best available techniques

5.1 *Table 5.1* provides a summary of the best available techniques that can be used to control the process in order to meet the emission limits and provisions in *Section 4*. Provided that it is demonstrated to the satisfaction of the regulator that an equivalent level of control will be achieved, then other techniques may be used.

<table>
<thead>
<tr>
<th>Release source</th>
<th>Substance</th>
<th>Control techniques</th>
</tr>
</thead>
</table>
| Melting and holding furnaces | Metal oxide fume and particulate flux emissions | Control furnace temperature - superheat provision varies according to process (e.g. continuous or batch casting), but should be kept as low as possible.
Contains emissions - by enclosed furnace for example:
Extract emissions.
Abate emissions where necessary to meet the provisions |
| Melting and holding furnaces | Particulate flux emissions | Minimise the addition of fluxes |
| Melting and holding furnaces | Dioxins | Use clean feedstock e.g. ingot.
Good combustion.
Particle arrestment. |
| Dry filter arrestment plant | Particulate matter | Ensure management of dust collected -collect directly into container for disposal to eliminate double handling, ensure collection vessels are secured and sealed. |
| Dross | Particulate matter | Collect dross into designated containers or bays. Keep it dry and store under cover. |
Techniques to control emissions from contained sources

5.2 Operational controls are the primary method of minimising emissions:

- Different alloys require different temperatures on pouring of the metal. If the metal temperature is not adequately controlled then excessive fuming can result, particularly where zinc containing alloys are being produced. A dip pyrometer is usually used to measure melt temperatures in the furnace.

- The addition of flux to both melting and holding furnaces should be minimised as far as possible, consistent with good operating practice.

- Further to operational controls, containment and arrestment of emissions may be necessary. The use of enclosed furnaces, peripheral lip extraction or fume collection enclosures with extract ventilation are commonly used techniques. Enclosed furnaces, casings, ductwork and ancillary equipment should be made and maintained as gas tight as is practicable. Filtered particulate emissions can be expected to be below 10 mg/m3 if modern plant designed for the purpose is used.

- Where scrap material is melted, care should be taken in selection of scrap and its introduction into the furnace to prevent emissions.

- A scrap quality control system should be in place to ensure that unsuitable scrap is not melted.

- Furnaces should be fitted with temperature controls to ensure that melting temperatures are kept as low as possible, so as to minimise emissions of fume. The melt temperature should be measured frequently and at least once during each melt when the potential for fume generation is greatest, such as before pouring.

- Emissions should be vented to suitable arrestment plant where necessary to meet the provisions of this note.

- Where practicable in relation to plant configuration, emissions produced during pouring should be contained by the use of secondary fume collection ventilation such as a hood or lip extraction which are commonly used techniques. This should vent to suitable arrestment plant where necessary to meet the provisions of this note.

- Where provided, furnace doors or lids should be kept closed except for a minimum period during charging of the furnace or during working of the metal.
Fugitive emissions

5.3 Emissions from the melting operations covered by this note comprise very fine particulate matter. The control of fugitive emissions from these processes is mainly by the use of containment, extraction and arrestment to achieve the provisions described in Table 4.1. Extraction systems should be designed, in particular, to deal with those operations which are likely to generate excessive or fugitive emissions, for example charging of the furnace.

- All process buildings should be cleaned regularly to minimise the risk of fugitive emissions and made as dust tight as is necessary to prevent visible emissions.
- Where local exhaust ventilation is used, emissions should be ducted to suitable arrestment plant, if necessary to achieve the provisions of this note.
- The method of collection and disposal of product or waste from dry arrestment plant should be such that dust emissions are minimised.
- Adequate provision should be made for the containment of liquid and solid spillages. All spillages should be cleared as soon as possible and in the case of solid materials this should be achieved by the use of vacuum cleaning, wet methods, or other appropriate techniques. All process buildings should be cleaned regularly to minimise the risk of fugitive emissions.
- Stocks of dusty, or potentially dusty, materials for example dross and fluxing powders should be stored in such a manner as to minimise wind whipping.
- Loading to and from stockpiles should be carried out in a manner which will minimise emissions to the air.
- All residues produced, including those produced by arrestment plant, should be handled and stored in a manner which minimises emissions to the air. Such materials should be handled under dry conditions and stored in clearly designated bays or containers after cooling.
- Dusty wastes should be stored in closed containers.
- All spillages should be cleared as soon as possible; solids by vacuum cleaning, wet methods, or other appropriate techniques.
- A high standard of housekeeping should be maintained.
Air quality

Dispersion & dilution

5.4 Pollutants that are emitted via a stack require sufficient dispersion and dilution in the atmosphere to ensure that they ground at concentrations that are deemed harmless. This is the basis upon which stack heights are calculated using HMIP Technical Guidance Note (Dispersion) D1. The stack height so obtained is adjusted to take into account local meteorological data, local topography, nearby emissions and the influence of plant structure.

The calculation procedure of D1 is usually used to calculate the required stack height but alternative dispersion models may be used in agreement with the regulator. An operator may choose to meet tighter emission limits in order to reduce the required stack height.

5.5 Where an emission consists purely of air and particulate matter, (i.e. no products of combustion or any other gaseous pollutants are emitted) the above provisions relating to stack height calculation for the purpose of dispersion and dilution should not normally be applied. Revised stack height calculations should not be required as a result of publication of this revision of the PG note, unless it is considered necessary because of a breach or serious risk of breach of an EC Directive limit value or because it is clear from the detailed review and assessment work that the permitted process itself is a significant contributor to the problem.

Ambient air quality management

5.6 In areas where air quality standards or objectives are being breached or are in serious risk of breach and it is clear from the detailed review and assessment work under Local Air Quality Management that the permitted process itself is a significant contributor to the problem, it may be necessary to impose tighter emission limits. If the standard that is in danger of being exceeded is not an EC Directive requirement, then industry is not expected to go beyond BAT to meet it. Decisions should be taken in the context of a local authority’s Local Air Quality Management action plan. For example, where a permitted process is only responsible to a very small extent for an air quality problem, the authority should not unduly penalise the operator of the process by requiring disproportionate emissions reductions.
Paragraph 59 of the Air Quality Strategy 2007 [Volume 1] gives the following advice: “...In drawing up action plans, local authority environmental health/pollution teams are expected to engage local authority officers across different departments, particularly, land-use and transport planners to ensure the actions are supported by all parts of the authority. In addition, engagement with the wider panorama of relevant stakeholders, including the public, is required to ensure action plans are fit-for-purpose in addressing air quality issues. It is vital that all those organisations, groups and individuals that have an impact upon local air quality, buy-in and work towards objectives of an adopted action plan.”

Stacks, vents and process exhausts

5.7 Liquid condensation on internal surfaces of stacks and exhaust ducts might lead to corrosion and ductwork failure or to droplet emission. Adequate insulation will minimise the cooling of waste gases and prevent liquid condensation by keeping the temperature of the exhaust gases above the dewpoint. A leak in a stack/vent and the associated ductwork, or a build up of material on the internal surfaces may affect dispersion:

- Flues and ductwork should be cleaned to prevent accumulation of materials, as part of the routine maintenance programme.

5.8 When dispersion of pollutants discharged from the stack (or vent) is necessary, the target exit velocity should be 15m/s under normal operating conditions, (but see paragraph below regarding wet plumes). In order to ensure dispersion is not impaired by either low exit velocity at the point of discharge, or deflection of the discharge, a cap, or other restriction, should not be used at the stack exit. However, a cone may sometimes be useful to increase the exit velocity to achieve greater dispersion.

5.9 An exception to the above is where wet arrestment is used as the abatement. Unacceptable emissions of droplets could occur from such plant where the linear velocity in the stack exceeds 9m/s.

5.10 To reduce the potential of droplet emissions a mist eliminator should be used. Where a linear velocity of 9m/sec is exceeded in existing plant consideration should be given to reducing this velocity as far as practicable to ensure such droplet entrainment and fall out does not happen.
Management

Management techniques

5.11 Important elements for effective control of emissions include:

- proper management, supervision and training for process operations;
- proper use of equipment;
- effective preventative maintenance on all plant and equipment concerned with the control of emissions to the air; **and**
- ensuring that spares and consumables - in particular, those subject to continual wear – are held on site, or available at short notice from guaranteed local suppliers, so that plant breakdowns can be rectified rapidly. This is important with respect to arrestment plant and other necessary environmental controls. It is useful to have an audited list of essential items.

Appropriate management systems

5.12 Effective management is central to environmental performance; it is an important component of BAT and of achieving compliance with permit conditions. It requires a commitment to establishing objectives, setting targets, measuring progress and revising the objectives according to results. This includes managing risks under normal operating conditions and in accidents and emergencies.

It is therefore desirable that installations put in place some form of structured environmental management approach, whether by adopting published standards (ISO 14001 or the EU Eco Management and Audit Scheme [EMAS]) or by setting up an environmental management system (EMS) tailored to the nature and size of the particular process. Operators may also find that an EMS will help identify business savings.

5.13 Regulators should use their discretion, in consultation with individual operators, in agreeing the appropriate level of environmental management. Simple systems which ensure that LAPPC considerations are taken account of in the day-to-day running of a process may well suffice, especially for small and medium-sized enterprises. Regulators are urged to encourage operators to have an EMS for all their activities, but it is outside the legal scope of an LAPPC permit to require an EMS for purposes other than LAPPC compliance. For further information/advice on EMS refer to the appropriate chapter of the appropriate Guidance Manual for England and Wales, Scotland and Northern Ireland.
Training

5.14 Staff at all levels need the necessary training and instruction in their duties relating to control of the process and emissions to air. In order to minimise risk of emissions, particular emphasis should be given to control procedures during start-up, shut down and abnormal conditions. Training may often sensibly be addressed in the EMS referred to above.

- All staff whose functions could impact on air emissions from the activity should receive appropriate training on those functions. This should include:
 - awareness of their responsibilities under the permit;
 - steps that are necessary to minimise emissions during start-up and shutdown;
 - actions to take when there are abnormal conditions, or accidents or spillages that could, if not controlled, result in emissions.

- The operator should maintain a statement of training requirements for each post with the above mentioned functions and keep a record of the training received by each person. These documents should be made available to the regulator on request.

Maintenance

5.15 Effective preventative maintenance plays a key part in achieving compliance with emission limits and other provisions. All aspects of the process including all plant, buildings and the equipment concerned with the control of emissions to air should be properly maintained. In particular:

- The operator should have the following available for inspection by the regulator:
 - a written maintenance programme for all pollution control equipment; and
 - a record of maintenance that has been undertaken.
6. Summary of changes

The main changes to this note, with the reasons for the change, are summarised in Table 6.1. Minor changes that will not impact on the permit conditions e.g. slight alterations to the Process Description have not been recorded.

<table>
<thead>
<tr>
<th>Section/ paragraph/ row</th>
<th>Change</th>
<th>Reason</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section 1</td>
<td>Simplification of text</td>
<td>Clarify Note</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Addition of Hyperlinks</td>
<td>Change to electronic format</td>
<td>Removes need for extensive footnotes/references.</td>
</tr>
</tbody>
</table>
7. Further information

Sustainable consumption and production (SCP)

Both business and the environment can benefit from adopting sustainable consumption and production practices. Estimates of potential business savings include:

- £6.4 billion a year UK business savings from resource efficiency measures that cost little or nothing;
- 2% of annual profit lost through inefficient management of energy, water and waste;
- 4% of turnover is spent on waste.

When making arrangements to comply with permit conditions, operators are strongly advised to use the opportunity to look into what other steps they may be able to take, for example, having regard to the efficient use of auxiliary fuels, such as gas and electricity. Regulators may be willing to provide assistance and ideas, although cannot be expected to act as unpaid consultants.

Health and safety

Operators of installations must protect people at work as well as the environment:

- requirements of a permit should not put at risk the health, safety or welfare of people at work or those who may be harmed by the work activity;
- equally, the permit must not contain conditions whose only purpose is to secure the health of people at work. That is the job of the health and safety enforcing authorities.

Where emission limits quoted in this guidance conflict with health and safety limits, the tighter limit should prevail because:

- emission limits under the relevant environmental legislation relate to the concentration of pollutant released into the air from prescribed activities;
- exposure limits under health and safety legislation relate to the concentration of pollutant in the air breathed by workers;
- these limits may differ since they are set according to different criteria. It will normally be quite appropriate to have different standards for the same pollutant, but in some cases they may be in conflict (for example, where air discharged from a process is breathed by workers). In such cases, the tighter limit should be applied to prevent a relaxation of control.
Further advice on responding to incidents

The UK Environment Agencies have published guidance on producing an incident response plan to deal with environmental incidents. Only those aspects relating to air emissions can be subject to regulation via a Part B (Part C in NI) permit, but regulators may nonetheless wish to informally draw the attention of all appropriate operators to the guidance.

It is not envisaged that regulators will often want to include conditions, in addition to those advised in this PG note, specifying particular incident response arrangements aimed at minimising air emissions. Regulators should decide this on a case-by-case basis. In accordance with BAT, any such conditions should be proportionate to the risk, including the potential for harm from air emissions if an incident were to occur. Account should therefore be taken of matters such as the amount and type of materials held on site which might be affected by an incident, the likelihood of an incident occurring, the sensitivity of the location of the installation, and the cost of producing any plans and taking any additional measures.