Process Guidance Note 6/45(11)
Statutory guidance for surface cleaning
Revised: June 2014
Defra would like to acknowledge the work of the Environment Agency’s Local Authority Unit in the drafting of this guidance note.
Revision of the guidance

The electronic version of this publication is updated from time to time with new or amended guidance. **Table 0.1** is an index to the latest changes (minor amendments are generally not listed).

<table>
<thead>
<tr>
<th>Date of change</th>
<th>Section/paragraph where change can be found</th>
<th>Nature of change</th>
</tr>
</thead>
<tbody>
<tr>
<td>June 2014</td>
<td>Fig 4.1</td>
<td>Error corrected in solvent management plan inputs and outputs diagram – in the text below the diagram, in the line ‘actual solvent emission’, O1 should not have been included</td>
</tr>
<tr>
<td>June 2013</td>
<td>SE Boxes 5&7</td>
<td>Addition of colour coding to clarify requirements</td>
</tr>
<tr>
<td>June 2013</td>
<td>Table 7.1</td>
<td>Addition of colour coding to clarify requirements</td>
</tr>
<tr>
<td>March 2013</td>
<td>throughout</td>
<td>Replacement throughout the solvent PG notes of ‘Solvent Emissions Directive’ with ‘industrial emissions Directive’ or ‘the Directive’ as appropriate</td>
</tr>
<tr>
<td></td>
<td>throughout</td>
<td>Replacement of the abbreviation ‘SED’ with ‘solvent emission’ ‘SE’ or ‘solvent emission activity(ies)’ as appropriate e.g. SED box will become SE box</td>
</tr>
<tr>
<td></td>
<td>SE Box 1</td>
<td>No longer needed under the industrial emissions Directive</td>
</tr>
<tr>
<td></td>
<td>SE Box 2</td>
<td>No longer needed under the industrial emissions Directive</td>
</tr>
<tr>
<td></td>
<td>SE Box 3</td>
<td>Definition of substantial change has altered; both new definitions are taken from Directive and as the definitions relate to different classes of installations, the SE Box is split into two boxes to make the differences clear</td>
</tr>
<tr>
<td></td>
<td>SE Box 4</td>
<td>To clarify the Directive basis for the provisions, three new notes have been added. They concern - report compliance, restore compliance if it is breached and for accidents and incidents, the Directive basis for the provisions is clarified</td>
</tr>
<tr>
<td></td>
<td>SE Boxes 5, 6 and 7</td>
<td>Monitoring of VOC emissions after abatement is no longer required to be annual – status of the monitoring column has changed from Directive to BAT with no shading to indicate non-Directive</td>
</tr>
<tr>
<td></td>
<td>SE Box 8</td>
<td>The Directive adds ‘or threatens to cause an immediate significant adverse effect upon the environment’</td>
</tr>
<tr>
<td></td>
<td>SE Box 9</td>
<td>Monitoring of VOC emissions after abatement is no longer required to be annual ‘No compliance by dilution’ has been added to SE box to clarify the Directive basis for the provision</td>
</tr>
<tr>
<td></td>
<td>SE Box 10</td>
<td>Minimal change - updating of Article references</td>
</tr>
<tr>
<td></td>
<td>SE Box 11</td>
<td>Minimal change - updating of Article references</td>
</tr>
</tbody>
</table>
| Para 1.18 | Paragraph for England only – activities that are ‘Directive only’, are not subject to best available techniques, simply the requirements of the Directive. ‘

Directive only’ means here - not caught by Part B of section 6.4-6.8 of Schedule 1, but subject to chapter V of the industrial emissions Directive |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 3.1</td>
<td>Links to new regulations updated</td>
</tr>
</tbody>
</table>
Revision of the guidance

1. Introduction
 Legal basis
 Who is the guidance for?
 Updating the guidance
 Consultation
 Policy and procedures
 EU industrial emissions Directive
 Which paragraphs of this note apply to solvent emission activities?
 England – solvent emission activities to which Chapter V of the Directive is applied but not BAT
 Which provisions in this note apply to non-Directive activities?
 General guidance on industrial emissions Directive

2. Timetable for compliance and reviews
 Existing processes or activities
 Permit reviews
 Specific industrial emissions Directive requirements

3. Activity description
 Regulations
 Installation
 Vapour degreasing
 Key design features of modern plant

4. Emission limits, monitoring and other provisions
 Solvent reduction scheme
 Determination of solvent consumption
 Solvent management plan
 Monitoring, investigating and reporting
 Information required by the regulator
 Visible emissions
 Emissions of odour
 Abnormal events
 Continuous monitoring
 Calibration and compliance monitoring
 Continuous monitoring of VOC abated releases
 Varying of monitoring frequency
 Monitoring of unabated releases
 Representative sampling
 Start up and shutdown

5. Control techniques
 Summary of best available techniques
 VOC control techniques
 General control techniques
 Air quality
 Management

6. Summary of changes

7. Further information
 Sustainable consumption and production (SCP)
 Health and safety
 Further advice on responding to incidents
 Hazard statement classifications
 Fluorinated Gas (F-gas) Regulations and Ozone Depleting Substances

Appendix 1: Industrial emissions Directive
List of Tables
Table 0.1 - Revision of the guidance ... i
Table 1.1 - Activities applying emission and fugitive limits ... 5
Table 1.2 - Activities applying total emission limit .. 5
Table 1.3 - Activities applying reduction scheme .. 5
Table 2.1 - Compliance timetable .. 8
Table 3.1 - Regulations listing activities .. 11
Table 5.1 - Summary of control techniques ... 35
Table 6.1 - Summary of changes ... 46
Table 7.1 - Classification of hazardous materials ... 49

List of Figures
Figure 3.1 - Potential VOC releases from a typical surface cleaning operation 17
Figure 4.1 - Solvent management plan inputs and outputs .. 24
1. Introduction

Legal basis

1.1 This note applies to the whole of the UK. It is issued by the Secretary of State, the Welsh Government, the Scottish Government and the Department of the Environment in Northern Ireland (DoE NI) to give guidance on the conditions appropriate for the control of emissions into the air from surface cleaning activities. It is published only in electronic form and can be found on the Defra website. It supersedes PG6/45(04) and NIPG6/45(04).

1.2 This guidance document is compliant with the Code of Practice on Guidance on Regulation page 6 of which contains the "golden rules of good guidance". If you feel this guidance breaches the code or you notice any inaccuracies within the guidance, please contact us.

1.3 This is one of a series of statutory notes giving guidance on the Best Available Techniques (BAT). The notes are all aimed at providing a strong framework for consistent and transparent regulation of installations regulated under the statutory Local Air Pollution Prevention and Control (LAPPC) regime in England and Wales, Scotland and Northern Ireland. The note will be treated as one of the material considerations when determining any appeals against a decision made under this legislation. In certain cases in England, the appropriate conditions for solvent emissions activities differ from BAT (see paragraph 1.18). Further guidance on the meaning of BAT can be found for England and Wales (in chapter 12 of the General Guidance Manual), Scotland, and Northern Ireland (in chapter 9).

1.4 In general terms, what are BAT for one installation in a sector are likely to be BAT for a comparable installation. Consistency is important where circumstances are the same. However, in each case it is, in practice, for regulators (subject to appeal) to decide what are BAT for each individual installation, taking into account variable factors such as the configuration, size and other individual characteristics of the installation, as well as the locality (e.g. proximity to particularly sensitive receptors).

1.5 The note also, where appropriate, gives details of any mandatory requirements affecting air emissions which are in force at the time of publication, such as those contained in Regulations or in Directions from the Government. In the case of this note, at the time of publication the mandatory requirements are those contained in the EU industrial emissions Directive. The Regulations referenced in paragraph 1.3 put the Directive requirements into UK law.
1.6 In Section 4 and Section 5, arrows are used to indicate the matters which should be considered for inclusion as permit conditions. It is important to note, however, that this should not be taken as a short cut for regulators to a proper determination of BAT or to disregard the explanatory material which accompanies the arrows. In individual cases it may be justified to:

- include additional conditions;
- include different conditions;
- not include conditions relating to some of the matters indicated.

In addition, conditions will need to be derived from other parts of the note, in particular to specify emission limits, compliance deadlines and mandatory requirements arising from directions or other legislation.

Who is the guidance for?

1.7 This guidance is for:

Regulators

- local authorities in England and Wales, who must have regard to this statutory guidance when determining applications for permits and reviewing extant permits;
- the Scottish Environment Protection Agency (SEPA) in Scotland, and district councils or the Northern Ireland Environment Agency (NIEA), in Northern Ireland for whom this is statutory guidance;

Operators who are best advised also to have regard to it when making applications and in the subsequent operation of their installation;

Members of the public who may be interested to know what the Government considers, in accordance with the legislation, amounts to appropriate conditions for controlling air emissions for the generality of installations in this particular industry sector.

Updating the guidance

1.8 The guidance is based on the state of knowledge and understanding, at the time of writing, of what constitute BAT for this sector. The note may be amended from time to time to keep up with developments in BAT, including improvements in techniques, changes to the economic parameters, and new understanding of environmental impacts and risks. The updated version will replace the previous version on the Defra website and will include an index to the amendments.
1.9 Reasonable steps will be taken to keep the guidance up-to-date to ensure that those who need to know about changes to the guidance are informed of any published revisions. However, because there can be rapid changes to matters referred to in the guidance – for example to legislation – it should not be assumed that the most recent version of this note reflects the very latest legal requirements; these requirements apply.

Consultation

1.10 This note has been produced in consultation with relevant trade bodies, representatives of regulators including members of the Industrial Pollution Liaison Committee and other potentially-interested organisations.

Policy and procedures

1.11 General guidance explaining LAPPC and setting out the policy and procedures is contained in separate documents for England and Wales, Scotland and Northern Ireland.

EU industrial emissions Directive

1.12 Most of the activities covered by this note are solvent emission activities (SE) under the industrial emissions Directive. To be such a solvent emission activity, it must:

be a surface cleaning activity listed as a solvent emission activity in the LAPPC regulations (see Table 3.1); and

a) consume 1 tonne or more of designated hazard statement volatile organic compounds (VOC) in any 12 month period; or

b) consume more than 2 tonnes of other solvents in any 12 month period

Which paragraphs of this note apply to solvent emission activities?

1.13 Everything in boxes labelled ‘SE box’ is mandatory, as is text which they invoke because it repeats what is required by the industrial emissions Directive. The rest of the note is guidance on Best Available Techniques for the sector.
1.14 The industrial emissions Directive requires replacement of certain solvents, as far as possible, in the shortest possible time. These are substances or mixtures which, because of their VOC content, are assigned or need to carry any of the following hazard statements H340, H350, H350i, H360D or H360F; there are further requirements which apply to the use of those materials, and to halogenated VOCs assigned hazard statements H341 or H351.

In June 2015, ‘hazard statements’ replace ‘risk phrases’. Until then both categories are in use, and the preceding paragraph should be read with ‘or risk phrases R45, R46, R49, R60, and R61’ following H340, and read with ‘or risk phrases R40 and R68’ following H351. The CLP Directive implements the change from risk phrases to hazard statements. For further information on the Globally Harmonized System of Classification and Labelling of Chemicals (GHS), visit the United Nations Economic Commission for Europe website.

1.15 The industrial emissions Directive then offers one route to compliance for surface cleaning activities:

- complying with Directive emission limits for waste gases and fugitive emissions

1.16 The SE boxes in this note are:

1 - new VOC abatement plant (no longer needed under the industrial emissions Directive)

2 - new installations (no longer needed under the industrial emissions Directive)

3A - substantial change to all installations

3B - substantial change to existing installations

4 - VOC compliance

5 - waste gas and fugitive emission limits and requirements

6 - total emission limit values

7 - requirements for designated materials

8 - non-compliance causing immediate danger

9 - VOC monitoring

10 - installations with two or more activities

11 - start up and shut down
1.17 Tables 1.1, 1.2 and 1.3 pick out the paragraphs and SE boxes that apply depending on which of these ways an operator chooses to comply:

- complying with the Directive emission limits and fugitive emission limits (see Table 1.1);
- complying with the Directive total emissions limits (see Table 1.2); (not an available compliance option for this activity).
- applying the Directive reduction scheme (see Table 1.3); (not an available compliance option for this activity).

Table 1.1 - Activities applying emission and fugitive limits

<table>
<thead>
<tr>
<th>Installation</th>
<th>Paragraphs of guidance note which apply</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single SE activity: surface cleaning</td>
<td></td>
</tr>
<tr>
<td>a) solvent consumption is 1 tonne or more of designated hazard statement materials; or</td>
<td></td>
</tr>
<tr>
<td>b) 2 tonnes or more of any other VOC</td>
<td></td>
</tr>
<tr>
<td>More than one SE activity:</td>
<td></td>
</tr>
<tr>
<td>a) or b) above plus any other SE activity</td>
<td></td>
</tr>
</tbody>
</table>

Note – where surface cleaning is carried out as a stand-alone SE installation and not part of a PPC installation then the air quality requirements of Section 5 of this note do not apply.

A solvent emissions activity (SE) is an activity falling within the scope of the industrial emissions Directive (that is, an activity as defined in Annex VII, Part 1 and which exceeds the thresholds in Annex VII, Parts 2 & 3 of the Directive).

Consumption is the organic solvent consumption of the activity (see Article 57(9) of the Directive). The determination of consumption is described in paragraph 4.7 of this note.

Activities not covered by this note:

- surface cleaning with solvent consumption of less than 1 tonne of designated hazard statement VOCs
- surface cleaning with other VOCs where the consumption is less than 2 tonnes

Table 1.2 - Activities applying total emission limit

This compliance option is not available for this activity.

Table 1.3 - Activities applying reduction scheme

This compliance option is not available for this activity.
England – solvent emission activities to which Chapter V of the Directive is applied but not BAT

1.18 In England, installations subject only to the industrial emissions Directive requirements are not subject to BAT other than in the very specific circumstances covered by Article 59(2) and (3) of the industrial emissions Directive. These installations are those which:

- carry on solvent emission activities in the Regulations (see Table 3.1);
- but do not also carry on activities listed in Part B or C of Sections 6.4 to 6.8 in the Regulations (see Table 3.1).

For these installations:

- the SE boxes apply, as does text which they invoke;
- the rest of the guidance in Sections 4 and 5 does not apply;
- BAT does not apply; any mention of BAT in the guidance should be read simply as the requirements of the industrial emissions Directive.

(In practice, this paragraph applies to drycleaners, some surface cleaning operations and some boatyards and shipyards in England. It might apply to other installations in England).

Which provisions in this note apply to non-Directive activities?

1.19 None of the SE boxes applies to non-Directive activities. All the remaining provisions are guidance on Best Available Techniques for the sector.

General guidance on industrial emissions Directive

1.20 The general guidance mentioned in paragraph 1.11 contains an outline of the industrial emissions Directive requirements, advice on derogations (that is, cases where, if specified criteria are met, an activity/activities can be excused from some requirements), the meaning of the ‘shortest possible time’ and other matters concerning industrial emissions Directive compliance.
Activities covered by this note

1.21 PG6/45(11) deals with surface cleaning. More details can be found in activity description in Section 3.

1.22 Directly associated and technically connected solvent emissions activities carried out within the same installation will form part of the activity and have to meet the provisions for that activity, unless defined as a separate activity within the Directive (see Appendix 1) in which case they should be regarded as an additional activity within a single installation and the provisions of SE Box 10 apply.

Coating and surface cleaning together

1.23 Where surface cleaning is carried out above the Directive thresholds and is directly associated and technically connected with another Directive activity e.g. coating, the full provisions of PG6/45 will need to be applied to the surface cleaning activities.
2. Timetable for compliance and reviews

Existing processes or activities

2.1 This note contains all the provisions from previous editions which have not been removed. Some have been amended. For installations in operation at the date this note is published, the regulator should have already issued or varied the permit having regard to the previous editions. If they have not done so, this should now be done.

2.2 The new provisions of this note and the dates by which compliance with these provisions is expected are listed in Table 2.1, together with the paragraph number where the provision is to be found. Compliance with the new provisions, which apply to both Directive and non-Directive activities, should normally be achieved by the dates shown. Permits should be varied as necessary, having regard to the changes and the timetable.

<table>
<thead>
<tr>
<th>Guidance</th>
<th>Relevant paragraph/ row in this note</th>
<th>Compliance date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Light coloured painting of outdoor tanks</td>
<td>Paragraph 5.3</td>
<td>By 31st December 2013</td>
</tr>
<tr>
<td>containing VOC*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>All other provisions</td>
<td></td>
<td>Normally within 12 months of the issue date of this note.</td>
</tr>
</tbody>
</table>

* Here and elsewhere in this note, this includes outdoor tanks containing any organic solvent and organic solvent-borne coating material, inks and adhesives.

2.3 Replacement plant should normally be designed to meet the appropriate standards specified for new installations/activities.

2.4 Where provisions in the preceding guidance note have been deleted or relaxed, permits should be varied as necessary as soon as reasonably practicable. Section 6 provides a summary of all changes.

2.5 For new activities, the permit should have regard to the full standards of this guidance from the first day of operation.

2.6 For substantially changed activities, the permit should normally have regard to the full standards of this guidance with respect to the parts of the activity that have been substantially changed and any part of the activity affected by the change, from the first day of operation.
Permit reviews

2.7 Under LAPPC, the legislation requires permits to be reviewed periodically but does not specify a frequency. It is considered for this sector that a frequency of once every eight years ought normally to be sufficient for the purposes of the appropriate Regulations. Further guidance on permit reviews is contained in the appropriate Guidance Manual for England and Wales, Scotland, Practical guide section 10 and Northern Ireland Part B Guidance page 9, Northern Ireland Part C Guidance chapter 17. Regulators should use any opportunities to determine the variations to permits necessitated by paragraph 2.2 above in conjunction with these reviews.

2.8 Conditions should also be reviewed where complaint is attributable to the operation of the process and is, in the opinion of the regulator, justified.

Specific industrial emissions Directive requirements

2.9 Since 31st October 2007 the full requirements of the solvent emissions Directive applied and have been continued in the industrial emissions Directive. All requirements, as set out in the SE boxes below and in Section 4, ought to have been complied with by that date.

| SE Box 1 - New VOC abatement plant |
| No longer needed under the industrial emissions Directive. |

| SE Box 2 - New installations |
| No longer needed under the industrial emissions Directive. |
SE Box 3A - Substantial change to all installations (Article 3(9) and 63)

‘Substantial change’ means a change in the nature or functioning, or an extension, of an installation which may have significant negative effects on human health or the environment.

Re-verify compliance: following a substantial change, compliance must be re-verified.

SE Box 3B - Substantial change to existing installations

‘Existing installation’ means an installation in operation on 29 March 1999 or which was granted a permit before 1 April 2001 or the operator of which submitted a complete application for a permit before 1 April 2001, provided that that installation was put in operation no later than 1 April 2002:

‘Substantial change’ additional meaning - a change of the maximum mass input of organic solvents by an existing installation averaged over 1 day, where the installation is operated at its design output under conditions other than start-up and shut-down operations and maintenance of equipment, shall be considered as substantial if it leads to an increase of emissions of volatile organic compounds of more than:

a) 25 % for an installation carrying out solvent cleaning with designated materials and with a solvent consumption of less than 5 tonnes per year;

b) 25% for an installation carrying out other solvent cleaning and with a solvent consumption of less than 10 tonnes per year;

c) 10 % for all other installations.

Change of limits: where an existing installation undergoes a substantial change, or falls within the scope of this Directive for the first time following a substantial change, that part of the installation which undergoes the substantial change shall be treated either as a new installation or as an existing installation, provided that the total emissions of the whole installation do not exceed those that would have resulted had the substantially changed part been treated as a new installation.
3. Activity description

Regulations

3.1 This note applies to LAPPC installations for surface cleaning activities involving solvents, except dry cleaning, to remove contamination from the surface of a material including degreasing, but excluding the cleaning of equipment. The activities for regulation are listed in Table 3.1.

<table>
<thead>
<tr>
<th>LAPPCC</th>
<th>Solvent consumption of surface cleaning activity</th>
<th>England and Wales</th>
<th>Scotland</th>
<th>Northern Ireland</th>
</tr>
</thead>
</table>
| Part B | • 1 tonne or more of designated hazard statement VOC in any 12-month period
 • 2 tonnes or more of any other VOC in any 12-month period | Reg 2 EPR as amended in 2013 refers to industrial emissions Directive Annex VII Parts 1 and 2 | Schedule 2 | n/a |
| Part C | • 1 tonne or more of designated hazard statement VOC in any 12-month period
 • 2 tonnes or more of any other VOC in any 12-month period | n/a | n/a | Schedule 1 section 7 Part C |

The links are to the original version of the Regulations. A consolidated version is not available on www.legislation.gov.uk.

For England and Wales, an unofficial consolidated version is available but read the first page of that document in order to understand its status and content.

Installation

3.2 ‘Installation’ means a stationary technical unit within which one or more activities listed in Part 1 of Annex VII are carried out, and any other directly associated activities on the same site which have a technical connection with the activities listed in those Annexes and which could have an effect on emissions and pollution.
3.3 Where a cleaning activity consist of more than one step before or after any other activity all the cleaning steps should be consider as part of one surface cleaning activity.

3.4 There are typically three process used for cleaning of components:

Machine cleaning processes - vapour degreasing, or organic solvent immersion

These cleaning processes can be carried out in open baths, semi-open baths or in fully enclosed plant.

Open processes - where components are cleaned in a stream of re-circulating organic solvent

Manual cleaning processes - where organic solvent is applied by means of a brush, rag, wipes or aerosols.

Organic solvents are effective in dissolving and removing organic materials such as oils and grease, or other contaminants that are soluble in the given organic solvent. The choice of organic solvent is critical and depends on the type of contamination and compatibility with the component material.

Vapour degreasing

When a 'dirty' component is placed in the vapour layer formed above a boiling liquid, the vapour condenses on the cold surface of the component and dissolves any soluble contaminants present.

As the vapour condenses, the liquid drains back into the boiling liquid below, carrying some of the soil with it. Further cleaning occurs as more vapour condenses on the component. Once the temperature of the component reaches that of the vapour, condensation ceases and the cleaning process is dramatically reduced. The component is then moved to the freeboard area, to allow the residue organic solvent to evaporate off prior to being withdrawn slowly and allowed to if necessary cool to room temperature.

Some solids and non-soluble material are washed away during this process. However, particulate matter may remain in 'blind' holes and upward-facing cup-like features. The removal of particulate matter usually requires boiling liquid, spraying (note spraying will cause atomisation of organic solvent and may lead to increased emissions) or even ultrasonic treatment. Tumbling is required to remove organic solvent from cup-like features, where this is not possible a syphon lance may be used to remove residual organic solvent such that it is returned to the sump of the degreaser.
Vapour degreasing is most effective with solid, thick components with a high heat capacity. Thin sections may not be cleaned as effectively because they heat up faster, thus reducing the amount of organic solvent condensing on the surface.

Key design features of modern plant

Modern vapour degreasers can typically be divided into four categories:

- conventional top loading;
- top loading with multiple doors;
- totally sealed end loading;
- conveyorised processes.

The first category is used widely; the second and third categories have lower levels of organic solvent loss and may be suitable where compliance with environmental regulations is more difficult to achieve. These types of plant also result in lower occupational exposure than many conventional open top degreasers.

1. **Conventional top loading unit**

The sump contains organic solvent which is heated by gas (there is a potential for the formation of toxic gases as a result of the reaction on some cleaning vapours and naked flames), electricity, steam or thermal fluid transfer media.

The work zone becomes filled with clean vapour rising from the vigorously boiling liquid in the sump to the condensation zone. ‘Cold’ components entering the work zone causes the vapour level to fall. Vapour then rises as heat is transferred to the work as it condenses. Vapour reaches the condensation zone only when the temperatures of the component and the organic solvent vapour have equalised.

The Condensation zone is where the vapour cools, condenses and returns via a water separator to the sump. A bank of water-cooled or refrigerated coils maintains a cold zone above the organic solvent vapour causing it to condense and return to the sump.

Condensed vapour is collected and allowed to flow to a water separator. Water, which becomes entrapped in the organic solvent vapour, separates and floats on the surface of the collected organic solvent. The organic solvent is returned to the sump, while the water layer is drawn off and treated.

The Freeboard zone extends from the mid-point of the condensation coils to the rim extraction level near the top of the degreaser, and allows residual liquid to evaporate from the component minimising organic solvent loss to the surrounding air. The purpose of the freeboard zone is to:
• minimise the effects of draughts on the vapour zone;
• provide a holding space to give a ‘flash-off’ time for organic solvent residues to evaporate from the components;
• enable work to be turned to drain liquid from cup-like areas.

Lids, which range from removable panels to automated roller shutters, are essential to prevent excessive vapour loss. The movement of lids should be controlled to prevent piston effects on the vapour as they are operated. They should be fitted between the top of the freeboard zone and below the rim extraction vents (see below). Lids or any other covers should not be placed above these vents as this causes organic solvent vapour to be drawn from the unit through the vents and discharged to the atmosphere. Lids are intended to minimise organic solvent losses while the plant is heating up, idling, cooling and switched off.

Rim extraction vents may be fitted to one, two or four sides, and are ducted to a suitable point outside the building or to absorption equipment. They are intended to minimise operator exposure to organic solvent vapour. Vertical air extraction is generally better than horizontal as it gives additional artificial freeboard area and acts like an artificial barrier between the operator and the organic solvent at all times. As excessively high extraction rates result in a substantial loss of organic solvent, control is important.

A motorised component load/unload system is recommended for all vapour degreasing plants. Such a system allows the speed of entry/exit of the work to be controlled.

Some conventional, top loading degreasing units are fitted with additional features to make them more effective.

Sub-dividing the work zone into two compartments (one compartment contains hot organic solvent and the other vapour) allows a combined boiling liquid/vapour process. This two-compartment system improves the removal of particulate and non-soluble matter. Clean organic solvent from the water separator is diverted to the liquid organic solvent zone; the excess flows over the weir into the sump. Components pass through the vapour zone before entering and after leaving the liquid zone.

2. Top loading unit with double doors

The basic top loading design can be modified to reduce emissions of organic solvent vapour into the working environment by adding extra doors and other features.

An automatically operated lid ensures that the degreaser is closed and sealed during idling periods.
Components are placed into the Load/unload zone in baskets, jigs or fixtures supported by a table or frame. Once the roller door is closed and the cleaning cycle initiated, an interlock device prevents the door being opened until the cleaning cycle is complete. The load/unload zone is intended to be free from organic solvent whenever the roller doors are open, and the Extraction purge system, removes the air/organic solvent mixture from the load/unload zone, operating immediately before the unload cycle. It only operates when the automatic lid is sealed and the organic solvent-containing zone isolated.

When all traces of organic solvent have been removed, the roller door interlock is deactivated. The door can then be opened, the work removed and new work added.

Multiple door plants can be supplied either as a complete plant or as a retrofit option to some designs of conventional open top degreasers.

3. **Totally sealed end loading plant**

These units operate a virtually closed loop with re-use of nearly all organic solvent. Such units are usually equipped with a side entry/exit, together with protected load/unload zones. They are capable of cleaning components up to a 1.5 x 1.5 x 3.0m envelope.

They are designed to wash the parts first by immersion in liquid organic solvent and then by vapour cleaning. The organic solvent's cleaning power can be improved by tumbling, pulsed agitation, or ultrasound. These additional features are used to remove stubborn soluble/non-soluble particulate matter and swarf. When organic solvent washing is complete, the organic solvent drains away and additional organic solvent vapour enters the cleaning chamber. Vapour cleaning removes residual contaminated liquid. The vapour is then withdrawn from the cleaning chamber, condensed and returned to the bulk clean organic solvent. The contaminated liquid is passed through fine strainers to remove particulate matter before it is distilled and returned to the clean organic solvent tank.

During the load/unload operation, extractors within the cleaning chamber create a positive airflow through the door into the unit and prevent organic solvent loss through the doors. The extracted air passes through activated carbon filters before being discharged to atmosphere. The advantage of this type of unit is that organic solvent consumption is dramatically reduced, potentially requiring no more than 100 litres/year of make-up organic solvent for a typical size plant, organic solvent vapour around the plant is reduced to low or negligible levels and emissions are well within the regulatory limits.
4. **Conveyorised processes**

These generally are based on open-top technology but with automatic conveyor systems presenting and removing the components to be cleaned. Because of the conveyor system, enclosure for emission reduction is more complex.

5. **Open re-circulating organic solvent processes (parts washers)**

Parts cleaners with high flash point Kerosene based solvents are used in vehicle maintenance and engineering workshops for cleaning small components in order to remove oils and greases prior to repair and reuse.

There are a number of different types of machine available to cater for different sized components and level of servicing required. These can be split into manual and semi automatic units.

6. **Manual parts cleaners**

These usually consist of a sink on a drum, or a simple tank containing the organic solvent.

In both cases the organic solvent is delivered to the cleaning area by a small submersible pump. Organic solvent is only contained in the cleaning area when in use. In addition both of these types of unit should have lids, which can be closed when not in use. The closing mechanism also includes a fusible link, which allows the lid to close automatically if a fire occurs in the general workshop area.

7. **Semi automatic cleaners**

Components placed into a semi automatic unit will usually be cleaned using some form of agitation and soaking facility. A manual wash is also incorporated for more difficult to clean areas. These units operate with the lid closed, except for loading and unloading.

In all cases the organic solvent used can be recycled for re-use.

8. **Manual Cleaning**

Simple cleaning of large and small parts can be carried out through manual application of an organic solvent by brush, rag, impregnated wipes or aerosol. This means of cleaning can reduce organic solvent use when used for small areas of a large item, although it tends to generate more waste than other processes. Depending on the organic solvent precautions are needed to avoid health, environmental and flammability risks.
Figure 3.1 - Potential VOC releases from a typical surface cleaning operation

Drummed storage of solvent

VOC releases from:
- spillage
- vapours whilst dispensing solvents

Empty drums

VOC releases from:
- residual solvent
- spillage during handling of drums

Dispensing of bulk solvent to intermediates for use on shop floor

VOC releases from:
- vapour displacement during tank filling
- breathing losses
- spillage, leakage from pipework and couplings

CLEANING MACHINE

VOC releases from:
- extracted vapours during operation
- fugitive emissions

Machine cleaning

VOC releases from:
- residual VOC in product

Cleaned product

VOC releases from:
- captured releases
- fugitive from handling

Collection of dirty solvent and distillation

VOC releases from:
- captured releases
- fugitive from handling

Residues handling / storage / disposal

VOC releases from:
- captured releases
- fugitive from handling

Solvent recycled to process

VOC releases from:
- fugitive emissions from storage / handling
4. **Emission limits, monitoring and other provisions**

4.1 Emissions of the substances listed in the Tables and SE boxes below should be controlled.

4.2 Guidance on techniques to achieve compliance with the industrial emissions Directive and BAT limit values and provisions is in **Section 5**. Monitoring of emissions should be carried out according to the method specified in this section or by an equivalent method agreed by the regulator. The latest information regarding the monitoring standards applicable can be found at the [Source Testing Association website](http://source-testing-association-website). Further information on monitoring can be found in Environment Agency publications, M1 and M2.

4.3 All activities should meet the requirements of the emission limits and conditions for certain designated hazard statement materials (see SE Box 7)

In addition to the above, activities should comply with the emission limits and provisions set out in **SE Box 5**.

4.4 For VOCs, the industrial emissions Directive offers three routes to compliance (SE Box 4 below) but for surface cleaning activities, **only one route** (Option (a) – compliance with the emission limit in waste gases and the fugitive emissions values) is available. All surface cleaning activities should apply the provisions of **SE Box 5**.

SE boxes 5 and 7 should be considered in conjunction with the monitoring paragraphs found later in this section.

The reference conditions for limits in **Section 4** are: 273.1K, 101.3kPa, without correction for water vapour content, unless stated otherwise.
SE Box 4 - VOC compliance (Articles 7, 8, 58, 59)

All activities

All installations must comply with the provisions of SE Box 7.

All installations must then comply with either:

a) the emission limit in waste gases and the fugitive emission limit in SE Box 5; or
b) the requirements of the total emission limit values in SE Box 6; or
c) the requirements of the reduction scheme in paragraphs 4.5.

All installations must report on compliance and the regulator requests the information needed. See paragraph 4.7 for consumption and for the solvent management plan, see paragraph 4.9.

For compliance with emission, fugitive and total limits, the regulator determines the frequency of monitoring. See the monitoring requirements alongside SE boxes 5 and 7 and paragraph 4.27 on varying monitoring frequency.

If compliance is breached, it should be restored within the shortest possible time (see also paragraphs 4.11 and 4.17).

For accidents and incidents significantly affecting the environment, paragraph 4.11 and 4.17 apply. In addition, further possible incidents or accidents should be prevented.
SE Box 5 - Waste gas and fugitive emission limits and requirements (Article 59 and Annex VII, Parts 2 & 3)

For all activities using the waste gas and fugitive emission limits and requirements

<table>
<thead>
<tr>
<th>Row</th>
<th>VOC in waste gases</th>
<th>Emission limits / requirement</th>
<th>Fugitive emission values</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Surface cleaning activities: Solvent consumption 1 – 5 tonnes of designated hazard statement materials</td>
<td>VOC expressed as total mass of individual designated hazard statement materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All waste gases</td>
<td>20 mg/Nm³</td>
<td>15% of solvent input</td>
</tr>
<tr>
<td>2</td>
<td>Surface cleaning activities Solvent consumption 5 tonnes or more of designated hazard statement materials</td>
<td>VOC expressed as total mass of individual designated hazard statement materials</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All waste gases</td>
<td>20 mg/Nm³</td>
<td>10% of solvent input</td>
</tr>
<tr>
<td>3</td>
<td>Surface cleaning activities Solvent consumption 2 – 10 tonnes of any other VOC</td>
<td>VOC expressed as total mass of organic carbon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All waste gases</td>
<td>75 mg carbon/Nm³</td>
<td>20% of solvent input</td>
</tr>
<tr>
<td>4</td>
<td>Surface cleaning activities Solvent consumption 10 tonnes or more of any other VOC</td>
<td>VOC expressed as total mass of organic carbon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>All waste gases</td>
<td>75 mg carbon/Nm³</td>
<td>15% of solvent input</td>
</tr>
<tr>
<td>5</td>
<td>The emission limits in Rows 3 and 4 above do not apply to individual organic solvent cleaning and degreasing solutions which contain less than 30% VOC by weight.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SE Box 6 - Total emission limit values industrial emissions Directive activities

Total emission limit values are not a valid route to industrial emissions Directive compliance for this sector.

Monitoring

Abated releases: Continuous monitoring and recording

PLUS

Manual extractive testing

Unabated releases: Manual extractive testing
Solvent reduction scheme

4.5 Solvent reduction scheme is not a valid route to compliance for this sector

Determination of solvent consumption

4.6 Construction of inventories of materials consumed and disposed of may involve the identification of individual organic solvents, or solids. This may give rise to an issue of commercial confidentiality. Information supplied must be placed on the public register, unless exclusion has been granted on the grounds of commercial confidentiality or national security. Further information can be found in the appropriate chapter of the relevant General Guidance Manual.

4.7 A determination of the organic solvent consumption, the total mass of organic solvent Inputs minus any solvents sent for reuse/recovery off-site, should be made and submitted to the regulator annually, preferably to coincide with the operators stocktaking requirements. This should be in the form of a mass balance in order to determine the annual actual consumption of organic solvent (C):

\[C = I_1 - O_8 \] (See Definitions, paragraph 4.9).

Solvent management plan

4.8 Operators buy solvents to replace those lost during the process or included in the product. There are both environmental and cost savings from reducing the losses. The industrial emissions Directive requires a solvent management plan to demonstrate compliance with fugitive emission limits (SE Box 5) and give the public access to information about solvent consumption etc.

4.9 The industrial emissions Directive provides guidance on what constitutes a solvent input and an output. This can be described more simply as needing data on:

Inputs:

How much solvent is:

- bought, whether in pure form or contained in products;
- recycled back into the process.
Outputs:

How much solvent is:

- emitted to air, whether directly or via abatement equipment;
- discharged to water, whether directly or via water treatment;
- sent away in waste;
- lost by spills, leaks etc;
- leaving the installation in the product.

The definitions in Annex VII, Part 7 of the industrial emissions Directive are as follows and are shown diagrammatically in Figure 4.1.

Inputs of Organic Solvent in the time frame over which the mass balance is being calculated (I)

I_1 The quantity of organic solvents or their quantity in mixtures purchased which are used as input into the process/activity (this is unlike the other solvent PG notes; the activity in this note includes organic solvents used in the cleaning of the products, but not those used for the cleaning of equipment).

I_2 The quantity of organic solvents or their quantity in mixtures recovered and reused as solvent input into the process/activity. (The recycled solvent is counted every time it is used to carry out the activity).

Outputs of Organic Solvents in the time frame over which the mass balance is being calculated (O)

O_1 Emissions in waste gases.

O_2 Organic solvents lost in water, if appropriate taking into account waste water treatment when calculating O_5.

O_3 The quantity of organic solvents which remains as contamination or residue in products output from the process/activity.

O_4 Uncaptured emissions of organic solvents to air. This includes the general ventilation of rooms, where air is released to the outside environment via windows, doors, vents and similar openings.
O5 Organic solvents and/or organic compounds lost due to chemical or physical reactions (including for example those which are destroyed, e.g. by thermal oxidation or other waste gas or waste water treatments, or captured, e.g. by adsorption, as long as they are not counted under O6, O7 or O8).

O6 Organic solvents contained in collected waste.

O7 Organic solvents, or organic solvents contained in mixtures, which are sold or are intended to be sold as a commercially valuable product.

O8 Organic solvents contained in mixtures recovered for reuse but not as input into the process/activity, as long as not counted under O7.

O9 Organic solvents released in other ways.
Figure 4.1 - Solvent management plan inputs and outputs

Solvent Management Plan

Consumption = \(I_1 \times O_1 \)
Actual solvent emission = \(I_1 \times (O_5 - O_6 - O_7 - O_8) \)
Fugitive emission (F) = \(I_1 \times (O_5 - O_6 - O_7 - O_8) \)
OR
Fugitive emission (F) = \(O_2 + O_3 + O_4 + O_9 \)

Industrial emissions Directive - solvent emissions activities

Fugitive emission value = \(\frac{F}{I_1 + I_2} \times 100\% \)
Total emission = \(O_1 + \) Fugitive emission (F)
SE Box 7 - industrial emissions Directive requirements for designated materials

Articles 58, 59, 80(7)

All activities using designated materials

Designated materials used in industrial emissions Directive installations must be either replaced, or controlled contained and limited, as set out below.

All Directive installations

1. **Materials designated because of their VOC content:**
 - hazard statement H340, H350, H350i, H360D, or H360F
 - until 1 Jun 2015: risk phrases R45, R46, R49, R60, or R61

 Requirements:
 - **Replace** as far as possible (Taking into account guidance under Article 64 of the industrial emissions Directive. See note 3 and Appendix 1) by less harmful substances or mixtures.
 - **Control** under contained conditions as far as technically and economically feasible to safeguard public health and the environment, normally, in accordance with the guidance provided within Section 5 of the note.

 Limit - where the sum of the mass flows of all the discharges of all the compounds causing the designated labelling is greater or equal to 10 g/h, a limit value of 2 mg/Nm3 for the mass sum of the individual compounds must apply.

 Monitoring:
 - Manual extractive testing

 Timescale:
 - Installations must comply within the shortest possible time
 - Immediately (and see note 1 below)

2. **Materials designated because of their halogenated VOC content:**
 - hazard statements H341 or H351
 - until 1 Jun 2015: risk phrases R40, or R68

 Requirements:
 - **Control** under contained conditions as far as technically and economically feasible to safeguard public health and the environment, normally, in accordance with the guidance provided within Section 5 of the note.

 Limit - where the sum of the mass flows of all the discharges of all the compounds causing the designated labelling is greater or equal to 100 g/h, a limit value of 20 mg/Nm3 for the mass sum of the individual compounds must apply.

 Monitoring:
 - Manual extractive testing

 Timescale:
 - Immediately (and see note 1 below)

Note 1 - substances or mixtures which are classified after the date of publication of this note as designated materials because of their VOC content, must apply the replace, control and limit requirements above within the shortest possible time from the date at which substances or mixtures became/become designated materials.

In determining the ‘shortest possible time’, the operator will need to justify their timetables taking account of the guidance in the relevant chapter of the appropriate Guidance Manual.

Note 2 - until 1 June 2015 ‘hazard statement’ materials will, broadly, also be known as ‘risk phrase’ materials. After 1st June 2015, only the term ‘hazard statement’ materials will apply; see Section 7 for further details.

Note 3 - the European Commission have published information on VOC substitution and reduction in activities covered by the VOC Solvents Emissions Directive. Guidance 04_05 is on surface cleaning.
Monitoring, investigating and reporting

4.10 The operator should monitor emissions, make tests and inspections of the activity. The need for and scope of testing (including the frequency and time of sampling) will depend on local circumstances.

- The operator should keep records of inspections, tests and monitoring, including all non-continuous monitoring, inspections and visual assessments. Records should be:
 - kept on site;
 - kept by the operator for at least two years; and
 - made available for the regulator to examine.

- If any records are kept off-site they should be made available for inspection within one working week of any request by the regulator.

Information required by the regulator

4.11 As well as being sent information to show compliance with solvent limits, the regulator needs to be informed of monitoring to be carried out and the results. The results should include process conditions at the time of monitoring.

- The operator should notify the regulator at least 7 days before any periodic monitoring exercise to determine compliance with emission limit values. The operator should state the provisional time and date of monitoring, pollutants to be tested and the methods to be used.

- The results of non-continuous emission testing should be forwarded to the regulator within 8 weeks of completion of the sampling.

- Adverse results from any monitoring activity (both continuous and non-continuous) should be investigated by the operator as soon as the monitoring data has been obtained. The operator should:
 - identify the cause and take corrective action;
 - clearly record as much detail as possible regarding the cause and extent of the problem, and the remedial action taken;
 - re-test to demonstrate compliance as soon as possible; and inform the regulator of the steps taken and the re-test results.
Visible emissions

4.12 The aim should be to prevent any visible airborne emission from any part of the process. This aim includes all sites regardless of location. Monitoring to identify the origin of a visible emission should be undertaken and a variety of indicative techniques are available.

- where ambient monitoring is carried out it may also be appropriate for the regulator to specify recording of wind direction and strength;
- where combustion units are in use for dryers then the combustion process should be controlled and equipment maintained as appropriate.

4.13 Emissions from combustion processes in normal operation should be free from visible smoke. During start up and shut down the emissions should not exceed the equivalent of Ringelmann Shade 1 as described in British Standard BS 2742.

- All other releases to air, other than condensed water vapour, should be free from persistent visible emissions.
- All emissions to air should be free from droplets.

Where there are problems that, in the opinion of the regulator, may be attributable to the installation, such as local complaints of visual emissions or where dust from the installation is being detected beyond the site boundary, the operator should investigate in order to find out which part of their operation(s) is the cause.

If this inspection does not lead to correction of the problem then the operator should inform the regulator who will determine whether ambient air monitoring is necessary. Ambient monitoring may either be by a British Standard method or by a method agreed with the regulator.

Whilst problems are ongoing, a visual check should also be made at least once per day/shift, by the operator, when an installation is being operated. The time, location and result of these checks, along with weather conditions such as indicative wind direction and strength, should be recorded. Once the source of the emission is known, corrective action should be taken without delay and where appropriate the regulator may want to vary the permit in order to add a condition requiring the particular measure(s) to be undertaken.
Emissions of odour

4.14 The overall aim should be that all emissions are free from offensive odour outside the site boundary, as perceived by the regulator. However, the location of the installation will influence the assessment of the potential for odour impact as local meteorological conditions may lead to poor dispersion conditions. Where the site has a low odour impact due to its remoteness from sensitive receptors, the escape of offensive odour beyond the installation would be unlikely to cause harm.

4.15 Where there are problems that, in the opinion of the regulator, may be attributable to the installation, such as local complaints of odour or where odour from the installation is being detected beyond the site boundary, the operator should investigate in order to find out which part of their operation(s) is the cause.

4.16 Whilst problems are ongoing, a boundary check should also be made at least once per day/shift, by the operator, when an installation is being operated. The time, location and result of these checks, along with weather conditions such as indicative wind direction and strength, should be recorded. Once the source of the emission is known, corrective action should be taken without delay and where appropriate the regulator may want to vary the permit in order to add a condition requiring the particular measure(s) to be undertaken.

Abnormal events

4.17 The operator should respond to problems which may have an adverse effect on emissions to air.

➢ In the case of abnormal emissions, malfunction or breakdown leading to abnormal emissions the operator should:

• investigate and undertake remedial action immediately;
• adjust the process or activity to minimise those emissions; and
• promptly record the events and actions taken.

➢ The regulator should be informed without delay, whether or not there is related monitoring showing an adverse result:

• if there is an emission that is likely to have an effect on the local community; or
• in the event of the failure of key arrestment plant, for example, bag filtration plant or scrubber units.

➢ The operator should provide a list of key arrestment plant and should have a written procedure for dealing with its failure, in order to minimise any adverse effects.
SE Box 8 - Non-compliance causing immediate danger (Article 7 and 8)
All activities

In cases of non-compliance causing immediate danger to human health, or threatening to cause an immediate significant adverse affect upon the environment, operation of the activity must be suspended.

All of following criteria should be taken into account:
- the toxicity of the substances being released;
- the amount released;
- the location of the installation; and
- the sensitivity of the receptors.

Continuous monitoring

4.18 Continuous monitoring can be either ‘quantitative’ or ‘indicative’. With quantitative monitoring the discharge of the pollutant(s) of concern is measured and recorded numerically. For pollution control this measurement is normally expressed in milligrams per cubic metre of air (mg/m³). Where discharge of the pollutant concerned is controlled by measuring an alternative parameter (the ‘surrogate’ measurement), this surrogate is also expressed numerically.

Continuous indicative monitoring is where a permanent device is fitted, for example, to detect leaks in a bag filter, but the output, whether expressed numerically or not, does not show the true value of the discharge. When connected to a continuous recorder it will show that emissions are gradually (or rapidly) increasing, and therefore maintenance is required. Alternatively it can trigger an alarm when there is a sudden increase in emissions, such as when arrestment plant has failed.

4.19 Where continuous indicative monitoring has been specified, the information provided should be used as a management tool. Where used, the monitor should be set up to provide a baseline output when the plant is known to be operating under the best possible conditions and emissions are complying with the requirements of the permit. Where used to trigger alarms, the instrument manufacturer should be able to set an output level which corresponds to around 75% of the emission limit. Thus the alarms are activated in response to this significant increase in pollutant loading above the baseline, so that warning of the changed state is given before an unacceptable emission occurs. The regulator may wish to agree the alarm trigger level.

4.20 Where continuous monitoring is required, it should be carried out as follows:
- All continuous monitoring readings should be on display to appropriately trained operating staff.
- Instruments should be fitted with audible and visual alarms, situated appropriately to warn the operator of arrestment plant failure or malfunction.
The activation of alarms should be automatically recorded.

All continuous monitors should be operated, maintained and calibrated (or referenced, in the case of indicative monitors) in accordance with the manufacturers’ instructions, which should be made available for inspection by the regulator.

The relevant maintenance and calibration (or referencing, in the case of indicative monitors) should be recorded.

Emission concentrations may be reported as zero when the plant is off and there is no flow from the stack. If required a competent person should confirm that zero is more appropriate than the measured stack concentration if there is no flow.

Any continuous monitor used should provide reliable data >95% of the operating time, (i.e. availability >95%). A manual or automatic procedure should be in place to detect instrument malfunction and to monitor instrument availability.

Calibration and compliance monitoring

4.21 Compliance monitoring can be carried out either by use of a continuous emissions monitor (CEM), or by a specific extractive test carried out at a frequency agreed with the regulator.

4.22 Where a CEM is used for compliance purposes it must be periodically checked, (calibrated), to ensure the readings being reported are correct. This calibration is normally done by carrying out a parallel stand-alone extractive test and comparing the results with those provided by the CEM.

4.23 For extractive testing the sampling should meet the following requirements:

- For batch processes, where the production operation is complete within, say, 2 hours, then the extractive sampling should take place over a complete cycle of the activity.

4.24 Should the activity either be continuous, or have a batch cycle that is not compatible with the time available for sampling, then the data required should be obtained over a minimum period of 2 hours in total.

- For demonstration of compliance where a CEM is used no daily mean of all 30-minute mean emission concentrations should exceed the specified emission concentration limits during normal operation (excluding start-up and shut-down); and
- No 30-minute mean emission concentration should exceed twice the specified emission concentration limits during normal operation (excluding start-up and shut-down).

- For extractive testing, no result of monitoring should exceed the emission limit concentrations specified.

4.25 Exhaust flow rates should be consistent with efficient capture of emissions, good operating practice and meeting the requirements of the legislation relating to the workplace environment.

- The introduction of dilution air to achieve emission concentration limits should not be permitted.

Dilution air may be added for waste gas cooling or improved dispersion where this is shown to be necessary because of the operational requirements of the plant, but this additional air should be discounted when determining the mass concentration of the pollutant in the waste gases.

Continuous monitoring of VOC abated releases

4.26 These paragraphs also apply where continuous monitoring and recording is required to demonstrate compliance with the VOC requirements of the note. For existing VOC abatement equipment surrogate measurements for VOC are acceptable. Where new VOC abatement equipment is installed, or existing VOC abatement equipment is modified or the operating conditions are changed, VOC monitoring should be carried out once more to demonstrate that the surrogate measurements are adequate to ensure compliance.

Thermal oxidisers must have continuous monitoring and recording for VOC expressed as total carbon excluding particulate matter. After sufficient monitoring data has been collected to clearly demonstrate adequate VOC destruction continuous monitoring of temperature may be used as a surrogate measurement.

Catalytic oxidisers must have continuous monitoring and recording for VOC expressed as total carbon excluding particulate matter. After sufficient monitoring data has been collected to clearly demonstrate adequate VOC destruction continuous monitoring of carbon monoxide and temperature may be used as a surrogate measurement. (It may be possible to waive the requirement for carbon monoxide monitoring, if the operator can demonstrate to the regulator that the catalytic oxidiser is designed in such a way that it cannot exceed the carbon monoxide limit (see Non VOC Emission Limits))
Bio scrubbers and reactors must have continuous monitoring and recording for VOC expressed as total carbon excluding particulate matter. After sufficient monitoring data has been collected to clearly demonstrate adequate VOC destruction continuous monitoring of the flow and pH of the re-circulating water, fan suction, exhaust temperature and pressure drop across the packing, coupled with daily monitoring of the nutrient may be used as a surrogate measurement.

Turbines, reciprocating engines, boilers or any other form of VOC abatement equipment must have continuous monitoring and recording for VOC expressed as total carbon excluding particulate matter.

SE Box 9 - VOC monitoring (Articles 60 and 61)

All activities using

- emission and fugitive limits; or
- total emission limit values with abatement

For periodic measurements of VOC at least three readings must be obtained during each measurement exercise.

VOC emission limit values shall be considered to be complied with if, in one monitoring exercise:

a) the average of all the readings does not exceed the emission limit values, and
b) none of the hourly averages exceeds the emission limit value by more than a factor of 1.5*.

Where continuous monitoring is carried out to demonstrate compliance with VOC emission limits:

c) none of the averages over 24 hours of normal operation exceeds the emission limit values, and
d) none of the hourly averages exceeds the emission limit values by more than a factor of 1.5.*

*the hourly average of the 30-minute means value may be used to demonstrate compliance.

Where monitoring does not meet the requirements of a) or b), then no result should exceed the emission concentration limits specified.

Compliance by dilution is not permitted – see paragraph 4.25

Varying of monitoring frequency

4.27 Where non-continuous quantitative monitoring is required, the frequency may be varied. Where there is consistent compliance with emission limits, regulators may consider reducing the frequency. However, any significant process changes that might have affected the monitored emission should be taken into account in making the decision.
4.28 The following should be considered when deciding whether compliance is consistent:

a) the variability of monitoring results, for example, results which range from 15 - 45 mg/m3, against an emission limit of 50 mg/m3 might not qualify for a reduction in monitoring.

b) the margin between the results and the emission limit, for example, results which range from 45 - 50 mg/m3 when the limit is 50 mg/m3 might not qualify for a reduction in monitoring.

Consistent compliance should be demonstrated using the results from at least:

- three or more consecutive annual monitoring campaigns; or
- two or more consecutive annual monitoring campaigns supported by continuous monitoring.

Where a new or substantially changed process is being commissioned, or where emission levels are near to or approach the emission concentration limits, regulators should consider increasing the frequency of testing.

4.29 A reduction in monitoring frequency should not be permitted where continuous quantitative or indicative monitoring is required. These types of monitoring are needed to demonstrate at all times when the plant is operating, that either the emission limits are being complied with or that the arrestment equipment is functioning correctly.

Monitoring of unabated releases

4.30 Where emission limit values are consistently met without the use of abatement equipment, the monitoring requirement for those pollutants should be dispensed with subject to the “Varying of monitoring frequency” paragraphs above.

Where monitoring is not in accordance with the main procedural requirements of the relevant standard, deviations should be reported.
Representative sampling

4.31 Whether sampling on a continuous or non-continuous basis, care is needed in the design and location of sampling systems, in order to obtain representative samples for all release points.

- Sampling points on new plant should be designed to comply with the British or equivalent standards (see paragraph 4.2).

- The operator should ensure that relevant stacks or ducts are fitted with facilities for sampling which allow compliance with the sampling standards.

| SE Box 10 - All Installations with two or more activities (Article 59(6)) |
|-----------------------------|---|
| Installations with two or more activities | Installations where two or more of the activities in Annex VII, Part 1 of the industrial emissions Directive are carried out, each of which exceeds the threshold in Annex VII, Part 2 of the industrial emissions Directive must: |
| | (1) as regards to designated hazard statement materials, meet the requirements specified in SE Box 7, for each activity individually; |
| | (2) as regards all other substances, either: |
| | (i) meet the requirements for each activity individually; or |
| | (ii) have total emissions not exceeding those that would have resulted had point (i) been applied. |

When applying 2 (ii) above, the solvent management plan should be completed to determine total emissions from all activities concerned. That figure must then be compared with the total emissions from the installation that would have resulted had the requirements of Annex VII, Part 2 of the industrial emissions Directive been met for each activity separately.

Start up and shutdown

4.32 Higher emissions may occur during start-up and shut-down of a process. These emissions can be reduced, by minimising, where possible, the number of start-ups and shut-downs and having adequate procedures in place for start-up, shut-down and emergency shut-downs.

- The number of start-ups and shut downs should be kept to the minimum that is reasonably practicable.

| SE Box 11 - Start-up and shut-down (Article 59(7)) |
|---|---|
| All appropriate precautions shall be taken to minimise emissions during start-up and shut-down. |
5. Control techniques

Summary of best available techniques

5.1 Table 5.1 provides a summary of the best available techniques that can be used to control the process in order to meet the emission limits and provisions in Section 4. Provided that it is demonstrated to the satisfaction of the regulator that an equivalent level of control will be achieved, then other techniques may be used.

<table>
<thead>
<tr>
<th>Release source</th>
<th>Substance</th>
<th>Control techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Storage and handling of organic solvents and materials containing organic solvents</td>
<td>VOC</td>
<td>Use of low organic solvent cleaning materials</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use of low volatility organic solvent cleaning solutions</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Use of enclosed storage vessels</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Siting of storage tanks;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Back venting deliveries if needed</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capture; or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capture and disposal; or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Capture and destruction</td>
</tr>
</tbody>
</table>

VOC control techniques

VOC and odour control storage

5.2 Odour may arise from the receipt, handling and storage of organic solvents and organic solvent-containing liquids. Careful siting of storage and mixing tanks, particularly in relation to new and replacement tanks, and controlled handling of odorous liquids may help prevent offensive emissions off-site. In addition:

- Bulk storage tanks for organic solvents and organic solvent-containing liquids should wherever practicable be back vented to the delivery tank during filling. Where this is impracticable, displaced air vents should be sited in such a way as to prevent the arising of offensive odour beyond the site boundary.

- All potentially odorous waste materials should be stored in suitable closed containers or bulk storage vessels, where appropriate vented to suitable abatement plant.
5.3 Breathing losses from bulk storage tanks can be minimised by fitting pressure vacuum relief valves. The vapour pressure within the bulk storage can also be minimised by reducing the solar absorbency of the storage tank.

- The exterior of outdoor bulk storage tanks for organic solvent storage should normally be light coloured.

- If necessary, emissions from fixed organic solvent storage tanks should be vented to suitable arrestment equipment to meet the emission limits in Section 4.

- All new static bulk organic solvent storage tanks containing organic solvent with a composite vapour pressure that is likely to exceed 0.4kPa at 20°C (293K) should be fitted with pressure vacuum relief valves. Pressure vacuum relief valves should be examined at regular intervals for signs of contamination, incorrect seating and be cleaned and/or corrected as required. The normal minimum examination frequency should be once every six months, but less frequent examination may be justified having regard for the tank contents and the potential emissions as a result of valve failure.

5.4 Both major and minor spillage of organic solvent from bulk storage tanks can arise as a result of a number of scenarios such as: overfilling of tanks, incorrect draining of filling lines, operator error or vandalism.

- Delivery connections to bulk storage tanks should be located within a bunded area.

- Where the operator can not demonstrate to the satisfaction of the regulation that suitable management controls and training with regard to bulk storage deliveries of organic solvents and organic solvent containing materials are in place, along with adequate on-site security, then connections to bulk storage tanks should be fixed and locked when not in use.

- All fixed storage tanks should be fitted with high-level alarms or volume indicators to warn of overfilling. Where practicable the filling systems should be interlocked to the alarm system to prevent overfilling.

- Bunding should:
 - completely surround the bulk liquid storage tanks;
 - be impervious and resistant to the liquids in storage; and
 - be capable of holding 110% of the capacity of the largest storage tank.

In certain circumstances, the specification of bunds may be controlled by other regulations. A code of practice on the use and storage of solvents is available at http://archive.defra.gov.uk/environment/quality/water/waterquality/ground/solvents.htm
VOC control handling

5.5 The receipt, handling, use and storage of organic solvents and organic solvent containing liquids will give rise to fugitive releases of VOC.

- Raw materials containing VOC should be stored in closed storage containers.
- All measures should be taken to minimise VOC emissions during mixing, i.e. the use of covered or closed mixing vessels.
- Emissions from the emptying of mixing vessels and transfer of materials should be adequately contained, preferably by the use of closed transfer systems. This may be achieved by the use of closed mobile containers, containers with close-fitting lids, or, preferably, closed containers with pipeline delivery.

VOC control equipment, location and design

5.6 The location and design of cleaning vessels can significantly affect releases of VOC and the impacts of odour on the surrounding environment.

- To reduce losses through air turbulence, degreasers should be sited away from draughts, shielded if necessary, isolated from hot flames, hot surfaces and welding operations and in a no smoking area.
- Where practicable cleaning fluids which do not contain organic solvent or cleaning fluids with significantly less volatile organic solvents should be used (with or without the addition of mechanical, chemical or thermal enhancements) (Note: HSE guidance should be sought prior to any substitution of existing cleaning fluids).

5.7 The use of totally enclosed hermetically sealed cleaning machines, modern enclosed machines and some specially designed open topped vapour degreasing machines may, in many cases reduce annual consumption to less than 1 tonne. In such cases the surface cleaning activity would become exempt from the requirements of this PG note. However, if the surface cleaning activity is directly associated and technically connected to a Directive activity the Control technique requirements of that activity's PG note would still apply.

- All vapour degreasing machines not complying with the requirements of SE Box 7 shall be modified or replaced within the shortest possible time, as agreed with the regulator.
- Where practicable, cleaning should be carried out in vapour degreasing machines designed and operated to meet the requirements of SE Box 7. If this is not practicable emissions should be contained and vented to abatement plant where necessary to meet the requirements of SE Box 5.
Where an enclosure is retrofitted to an open-topped degreasing vessel the following issues should be addressed:

- a lid separating the enclosure from the organic solvent tank should provided, thereby minimising emissions during operation;
- the door separating the enclosure from the external environment should be interlocked with the ventilation and the sealing lid separating the enclosure from the organic solvent chamber, to ensure that the outer doors are closed and the ventilation is off before the sealing lid can be opened to degrease work.

Where possible, work-handling equipment for transporting the components through the degreasing process should be integral to the machine. The equipment should be designed to provide the appropriate speed of travel and process dwell times with interlocks to the operation of the lid of the degreasing vessel, enclosure door and ventilation system to minimise disturbance of vapours within the organic solvent chamber during degreasing and transportation of the load. Where it is not possible to have the equipment integral to the degreasing machine the work handling system should be designed to provide the required process control and interlock facilities.

The basket configuration should be designed to enhance the cleaning efficiency whilst at the same time minimising the potential for retention of organic solvent/ vapours within each load cleaned.

The programming and loading of working into vapour degreasing machines should be controlled, monitored and reviewed to ensure that the number of surface cleaning operations is minimised by ensuring that the basket is loaded to its maximum capacity whilst ensuring that the orientation and packing of the components is optimised to reduce possible retention and drag out of organic solvent.

An energy control system should be fitted to sense the vapour condition and control heat input to meet the requirements of the degreasing process and minimise emissions during non process periods.

Where practicable cooling coils should be fitted to a self contained closed loop chiller unit, which will reduce energy costs and ensure maximum efficiency in organic solvent vapour containment.
VOC control cleaning

5.8 Cleaning operations will give rise to fugitive releases of VOC.

- Cleaning operations involving organic solvents should be periodically reviewed, normally at least once every two years, to identify opportunities for reducing VOC emissions (e.g. cleaning steps that can be eliminated or alternative cleaning methods). The regulator should be provided with a report on the conclusions of the review.

- Oil and grease contamination of parts to be cleaned should be minimised by:
 - spin-off excess oils or grease prior to use of cleaning organic solvents;
 - longer drain times between machining and cleaning of components;
 - careful stacking of components prior to cleaning to reduce oil retention.

- The unloading/loading equipment, which operators should be trained to use, should be used for all loads and not just those too heavy or awkward for easy lifting. This will ensure that the correct loading and unloading speed is used every time.

- When charging the degreasing plant and when pumping out waste, totally contained emission free transfer systems should be used. Charging of the bath can be by pump or gravity fed methods. The point at which organic solvent discharges into the degreasing plant should be where practicable below the liquid level in the sump. If the discharge point is above the liquid level, the plant must be cool before introducing organic solvent. Condensing and ventilation systems must be in operation when transferring organic solvent.

- For individual degreasing plants whose annual consumption is **less than 1 tonne** per annum, care should be taken in loading jigs to minimise piston effect and on unloading to minimise organic solvent drag-out. A hook or other device should be provided so that the jig may hang in the free board zone to allow residual organic solvent to evaporate; the actual time required will vary depending on the size and shape of the work pieces. The jig should be held in the free board zone to allow evaporation of residual organic solvents. The dwell time within the free board zone should be sufficient to allow this evaporation to take place. The actual dwell times will depend on the size and shape of the work pieces.
For individual degreasing plant whose annual consumption is **more than 1 tonne** per annum of organic solvent or more, a hoist system should be provided. The hoist should have a working speed no greater than 3 meters per minute in the vertical plane and 6 meters per minute in the horizontal plane. The jig should be held in the free board zone to allow evaporation of residual organic solvents. The dwell time within the free board zone should be sufficient to allow this evaporation to take place. The actual dwell times will depend on the size and shape of the work pieces.

When processing is finished, the heaters within the degreasing vessel should be switched off, the cooling coils and ventilation system should be run for at least 30 minutes once the heaters have been switch off.

Degreasing plant should be covered when not in use.

Application of cleaning solvents should be:

- from a contained device or automatic system when applied directly on to machine rollers; and
- dispensed by piston type dispenser or similar contained device, when used on wipes.

Dispensing of cleaning solvents should be:

- in the case of fixed manufacturing equipment from a contained device or automatic system when applied directly;
- dispensed by piston type dispenser or similar contained device, when used on wipes.

VOC control manual cleaning

Where machine cleaning is impractical, manual cleaning may take place and will lead to fugitive emissions.

Emissions should be contained and vented and abated, if appropriate. Emissions must comply with the requirements of **Section 4**.

When organic solvent is used on wipes:

- pre-impregnated wipes should be held within an enclosed container prior to use;
- where practicable no organic solvent cleaning fluids or significantly less volatile organic solvents cleaning fluids should be used (with or without the addition of mechanical, chemical or thermal enhancements).
VOC control operational

5.10 Organic solvent losses can be identified and minimised by operational controls and good operational practice.

- a programme to monitor and record the consumption of organic solvent/organic solvent cleaners should be used to minimise the amount of excess organic solvent / organic solvent cleaners used.

VOC control waste

5.11 Waste contaminated with VOC may give rise to both odorous and fugitive emissions.

- All reasonably practicable efforts should be made to minimise the amount of residual organic solvent bearing material left in drums and other containers after use. All organic solvent contaminated waste should be stored in closed containers.

- Prior to disposal, empty drums and containers contaminated with organic solvent should be closed to minimise emissions from residues during storage prior to disposal and labelled, so that all personnel who handle them are aware of their contents and hazardous properties.

- Nominally empty drums or drums containing waste contaminated with VOC awaiting disposal should be stored in accordance with the requirements for full or new containers.

- Prior to disposal used wipes and other items contaminated with organic solvent should be placed in a suitably labelled metal bin fitted with a self-closing lid.

Note: from a health and safety point of view it is advised that bins should be emptied at least daily, as they not only present a fire hazard, they may also undergo spontaneous combustion.

- for materials that may undergo spontaneous combustion special bins that allow air to circulate beneath and around them to aid cooling are advised or other bins specifically designed for this purpose.
General control techniques

Dust and spillage control

5.12 Adequate provision to contain liquid and solid spillage is needed. Closed containers can prevent wind whipping of dusty, dry waste materials such as materials collected during combustion chamber cleaning or arising from particulate abatement plant:

- Dusty wastes should be stored in closed containers and handled in a manner that avoids emissions;
- Dry sweeping of dusty materials should not normally be permitted unless there are environmental or health and safety risks in using alternative techniques;
- Suitable organic solvent containment and spillage equipment should be readily available in all organic solvent handling areas;
- A high standard of housekeeping should be maintained.

Air quality

Dispersion & dilution

5.13 Pollutants that are emitted via a stack require sufficient dispersion and dilution in the atmosphere to ensure that they ground at concentrations that are deemed harmless. This is the basis upon which stack heights are calculated using HMIP Technical Guidance Note (Dispersion) D1. The stack height so obtained is adjusted to take into account local meteorological data, local topography, nearby emissions and the influence of plant structure.

The calculation procedure of D1 is usually used to calculate the required stack height but alternative dispersion models may be used in agreement with the regulator. An operator may choose to meet tighter emission limits in order to reduce the required stack height.

5.14 Where an emission consists purely of air and particulate matter, (i.e. no products of combustion or any other gaseous pollutants are emitted) the above provisions relating to stack height calculation for the purpose of dispersion and dilution should not normally be applied. Revised stack height calculations should not be required as a result of publication of this revision of the PG note, unless it is considered necessary because of a breach or serious risk of breach of an EC Directive limit value or because it is clear from the detailed review and assessment work that the permitted process itself is a significant contributor to the problem.
Ambient air quality management

5.15 In areas where air quality standards or objectives are being breached or are in serious risk of breach and it is clear from the detailed review and assessment work under Local Air Quality Management that the permitted process itself is a significant contributor to the problem, it may be necessary to impose tighter emission limits. If the standard that is in danger of being exceeded is not an EC Directive requirement, then industry is not expected to go beyond BAT to meet it. Decisions should be taken in the context of a local authority’s Local Air Quality Management action plan. For example, where a permitted process is only responsible to a very small extent for an air quality problem, the authority should not unduly penalise the operator of the process by requiring disproportionate emissions reductions. Paragraph 59 of the Air Quality Strategy 2007 [Volume 1] gives the following advice:

“...In drawing up action plans, local authority environmental health/pollution teams are expected to engage local authority officers across different departments, particularly, land-use and transport planners to ensure the actions are supported by all parts of the authority. In addition, engagement with the wider panorama of relevant stakeholders, including the public, is required to ensure action plans are fit-for-purpose in addressing air quality issues. It is vital that all those organisations, groups and individuals that have an impact upon local air quality, buy-in and work towards objectives of an adopted action plan.”

Stacks, vents and process exhausts

5.16 Liquid condensation on internal surfaces of stacks and exhaust ducts might lead to corrosion and ductwork failure or to droplet emission. Adequate insulation will minimise the cooling of waste gases and prevent liquid condensation by keeping the temperature of the exhaust gases above the dewpoint. A leak in a stack/vent and the associated ductwork, or a build up of material on the internal surfaces may affect dispersion:

- Flues and ductwork should be cleaned to prevent accumulation of materials, as part of the routine maintenance programme.

5.17 When dispersion of pollutants discharged from the stack (or vent) is necessary, the target exit velocity should be 15m/s under normal operating conditions, however, lower velocities than 15m/s are acceptable provided adequate dispersion and dilution is achieved (see also the paragraph below regarding wet plumes). In order to ensure dispersion is not impaired by either low exit velocity at the point of discharge, or deflection of the discharge, a cap, or other restriction, should not be used at the stack exit. However, a cone may sometimes be useful to increase the exit velocity to achieve greater dispersion.

5.18 An exception to the previous paragraph is where wet arrestment is used as the abatement. Unacceptable emissions of droplets could occur from such plant where the linear velocity in the stack exceeds 9m/s.
5.19 To reduce the potential of droplet emissions a mist eliminator should be used. Where a linear velocity of 9m/s is exceeded in existing plant consideration should be given to reducing this velocity as far as practicable to ensure such droplet entrainment and fall out does not happen.

Management

Management techniques

5.20 Important elements for effective control of emissions include:

- proper management, supervision and training for process operations;
- proper use of equipment;
- effective preventative maintenance on all plant and equipment concerned with the control of emissions to the air; and
- ensuring that spares and consumables - in particular, those subject to continual wear – are held on site, or available at short notice from guaranteed local suppliers, so that plant breakdowns can be rectified rapidly. This is important with respect to arrestment plant and other necessary environmental controls. It is useful to have an audited list of essential items.

Appropriate management systems

5.21 Effective management is central to environmental performance; it is an important component of BAT and of achieving compliance with permit conditions. It requires a commitment to establishing objectives, setting targets, measuring progress and revising the objectives according to results. This includes managing risks under normal operating conditions and in accidents and emergencies.

It is therefore desirable that installations put in place some form of structured environmental management approach, whether by adopting published standards (ISO 14001 or the EU Eco Management and Audit Scheme [EMAS]) or by setting up an environmental management system tailored to the nature and size of the particular process. Operators may also find that an environmental management scheme will help identify business savings.
5.22 Regulators should use their discretion, in consultation with individual operators, in agreeing the appropriate level of environmental management. Simple systems which ensure that LAPPC considerations are taken account of in the day-to-day running of a process may well suffice, especially for small and medium-sized enterprises. Regulators are urged to encourage operators to have an environmental management scheme for all their activities, but it is outside the legal scope of an LAPPC permit to require one for purposes other than LAPPC compliance. For further information/advice refer to the appropriate chapter of the appropriate Guidance Manual for England and Wales, Scotland and Northern Ireland.

Training

5.23 Staff at all levels need the necessary training and instruction in their duties relating to control of the process and emissions to air. In order to minimise risk of emissions, particular emphasis should be given to control procedures during start-up, shut down and abnormal conditions. Training may often sensibly be addressed in the environmental management scheme.

- All staff whose functions could impact on air emissions from the activity should receive appropriate training on those functions. This should include:
 - awareness of their responsibilities under the permit;
 - steps that are necessary to minimise emissions during start-up and shutdown;
 - actions to take when there are abnormal conditions, or accidents or spillages that could, if not controlled, result in emissions.

- The operator should maintain a statement of training requirements for each post with the above mentioned functions and keep a record of the training received by each person. These documents should be made available to the regulator on request.

Maintenance

5.24 Effective preventative maintenance plays a key part in achieving compliance with emission limits and other provisions. All aspects of the process including all plant, buildings and the equipment concerned with the control of emissions to air should be properly maintained. In particular:

- The operator should have the following available for inspection by the regulator:
 - a written maintenance programme for all pollution control equipment; and
 - a record of maintenance that has been undertaken.
6. Summary of changes

The main changes to this note, with the reasons for the change, are summarised in Table 6.1. Minor changes that will not impact on the permit conditions e.g. slight alterations to the Process Description have not been recorded.

<table>
<thead>
<tr>
<th>Table 6.1 - Summary of changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Section/paragraph/row</td>
</tr>
<tr>
<td>Introduction</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Section 3 Activity Description</td>
</tr>
<tr>
<td>Emission limits, monitoring and other provisions</td>
</tr>
<tr>
<td>Control techniques</td>
</tr>
<tr>
<td>Air Quality</td>
</tr>
<tr>
<td>Paras 4.15 - 4.17 Visible Emissions</td>
</tr>
</tbody>
</table>
7. Further information

Sustainable consumption and production (SCP)

Both business and the environment can benefit from adopting sustainable consumption and production practices. Estimates of potential business savings include:

- £6.4 billion a year UK business savings from resource efficiency measures that cost little or nothing;
- 2% of annual profit lost through inefficient management of energy, water and waste;
- 4% of turnover is spent on waste.

When making arrangement to comply with permit conditions, operators are strongly advised to use the opportunity to look into what other steps they may be able to take, for example, having regard to the efficient use of auxiliary fuels, such as gas and electricity. Regulators may be willing to provide assistance and ideas, although cannot be expected to act as unpaid consultants.

Health and safety

Operators of installations must protect people at work as well as the environment:

- requirements of a permit should not put at risk the health, safety or welfare of people at work or those who may be harmed by the work activity;
- equally, the permit must not contain conditions whose only purpose is to secure the health of people at work. That is the job of the health and safety enforcing authorities.

Where emission limits quoted in this guidance conflict with health and safety limits, the tighter limit should prevail because:

- emission limits under the relevant environmental legislation relate to the concentration of pollutant released into the air from prescribed activities;
- exposure limits under health and safety legislation relate to the concentration of pollutant in the air breathed by workers;
- these limits may differ since they are set according to different criteria. It will normally be quite appropriate to have different standards for the same pollutant, but in some cases they may be in conflict (for example, where air discharged from a process is breathed by workers). In such cases, the tighter limit should be applied to prevent a relaxation of control.
Further advice on responding to incidents

The UK Environment Agencies have published guidance on producing an incident response plan to deal with environmental incidents. Only those aspects relating to air emissions can be subject to regulation via a Part B (Part C in NI) permit, but regulators may nonetheless wish to informally draw the attention of all appropriate operators to the guidance.

It is not envisaged that regulators will often want to include conditions, in addition to those advised in this PG note, specifying particular incident response arrangements aimed at minimising air emissions. Regulators should decide this on a case-by-case basis. In accordance with BAT, any such conditions should be proportionate to the risk, including the potential for harm from air emissions if an incident were to occur. Account should therefore be taken of matters such as the amount and type of materials held on site which might be affected by an incident, the likelihood of an incident occurring, the sensitivity of the location of the installation, and the cost of producing any plans and taking any additional measures.

Hazard statement classifications

Until 1 June 2015 “hazard statement” materials might also be known as “risk phrase” materials. From 1 June 2015, only the term “hazard statement” materials will apply. This change is incorporated in the industrial emissions Directive, and all requirements regarding hazard statement materials still apply to risk phrase materials. Table 7.1 has been included to allow comparison between the two ways of labelling hazardous materials.

Fluorinated Gas (F-gas) Regulations and Ozone Depleting Substances

Certain key obligations apply to the use of fluorinated (F-gas) and Ozone Depleting Substances (ODS) used as cleaning solvents. Designated Materials used in SED installations must either be replaced, controlled or limited and care should be taken to ensure that operators comply with the requirements of the F-gas and ODS Regulations for any replacement solvents that may contain F-gases or ODS.

At the time of publication of this guidance, further information was available at:
http://www.defra.gov.uk/environment/quality/air/fgas/

or

by contacting F Gas Support at fgas-support@enviros.com
Table 7.1 - Classification of hazardous materials

<table>
<thead>
<tr>
<th>Risk Phrases</th>
<th>The industrial emissions Directive catches materials which, because of their VOC content, are designated with the phrases/statements in these columns</th>
<th>Halogenated VOC is the trigger for the Directive in this column</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hazard statements categories They are NOT exact equivalents</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Risk Phrases</td>
<td>class 1 ‘known to’</td>
<td>class 2 ‘treat as’</td>
</tr>
<tr>
<td>Hazard statements categories They are NOT exact equivalents</td>
<td>category 1a known from human evidence</td>
<td>category 1b presumed from animal evidence</td>
</tr>
<tr>
<td>H340, H350, H350i, H360D or H360F</td>
<td></td>
<td>H341</td>
</tr>
<tr>
<td>Carcinogens</td>
<td>R45 May cause cancer</td>
<td>R45 May cause cancer</td>
</tr>
<tr>
<td></td>
<td>H350 May cause cancer</td>
<td>H350 May cause cancer</td>
</tr>
<tr>
<td>Mutagens</td>
<td>R46 May cause heritable genetic damage</td>
<td>R46 May cause heritable genetic damage</td>
</tr>
<tr>
<td></td>
<td>H340 May cause genetic defects</td>
<td>H340 May cause genetic defects</td>
</tr>
<tr>
<td>Carcinogen by inhalation</td>
<td>R49 May cause cancer by inhalation</td>
<td>R49 May cause cancer by inhalation</td>
</tr>
<tr>
<td></td>
<td>H350i May cause cancer by inhalation</td>
<td>H350i May cause cancer by inhalation</td>
</tr>
<tr>
<td>Toxic to reproduction</td>
<td>R60 May impair fertility - and R61 May cause harm to the unborn child</td>
<td>R60 May impair fertility - and R61 May cause harm to the unborn child</td>
</tr>
<tr>
<td></td>
<td>H360D or H360F May damage fertility or the unborn child</td>
<td>H360D or H360F May damage fertility or the unborn child</td>
</tr>
</tbody>
</table>

Outside: the Directive - R62 and R63 for the suspected R phrases say “possible risk to”.
Appendix 1: Industrial emissions Directive

The industrial emissions Directive 2010/75 recasts 7 Directives including the solvent emissions Directive, which is minimally changed.

In the industrial emissions Directive, Chapters I and V, and Annex VII, Parts 1 to 8 are most directly related to the solvent emissions Directive and this guidance note.

The Directive chapters are:

Chapter I - common provisions
Chapter II - provisions for activities listed in Annex I
Chapter III - special provisions for combustion plants
Chapter IV - special provisions for waste incineration plants and waste co-incineration plants
Chapter V - special provisions for installations and activities using organic solvents
Chapter VI - special provisions for installations producing titanium dioxide
Chapter VII - committee, transitional and final provisions

In the Directive, the Parts of Annex VII are:

Part 1 - activities
Part 2 - thresholds and emission limit values
Part 3 - emission limit values for installations of the vehicle coating industry
Part 4 - emission limit values relating to volatile organic compounds with specific risk phrases
Part 5 - reduction scheme
Part 6 - emission monitoring
Part 7 - solvent management plan
Part 8 - assessment of compliance with emission limit values in waste gases